The standard distribution of \LaTeX contains a number of document classes that are meant to be used, but also serve as examples for other users to create their own document classes. These document classes have become very popular among \LaTeX users. But it should be kept in mind that they were designed for American tastes and typography. At one time they even contained a number of hard-wired texts.

This manual describes babel, a package that makes use of the capabilities of \TeX version 3 and, to some extent, xetex and luatex, to provide an environment in which documents can be typeset in a language other than US English, or in more than one language or script.

Current development is focused on Unicode engines (Xe\TeX and Lua\TeX). New features related to font selection, bidi writing and the like will be added incrementally, but you may use babel for many languages.

Currently babel provides support (total or partial) for about 200 languages, either as a package option or as an ini file. Furthermore, new languages can be created from scratch easily.
15 Support for Plain TeX (plain.def) 120
15.1 Not renaming hyphen.tex 120
15.2 Emulating some \TeX features 121
15.3 General tools ... 121
15.4 Encoding related macros 125
15.5 Babel options .. 128

16 Acknowledgements 128
Part I
User guide

This user guide focuses on \LaTeX. There are also some notes on its use with Plain \TeX.

1 The user interface

1.1 Monolingual documents

In most cases, a single language is required, and then all you need in \LaTeX is to load the package using its standard mechanism for this purpose, namely, passing that language as an optional argument. In addition, you may want to set the font and input encodings.

EXAMPLE Here is a simple full example. The packages `fontenc` and `inputenc` do not belong to babel, but they are included in the example because typically you will need them:

\begin{verbatim}
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[french]{babel}
\begin{document}
Plus ça change, plus c'est la même chose!
\end{document}
\end{verbatim}

WARNING A common source of trouble is a wrong setting of the input encoding. Make sure you set the encoding actually used by your editor.

Another approach is making the language (french in the example) a global option in order to let other packages detect and use it:

\begin{verbatim}
\documentclass[french]{article}
\usepackage{babel}
\usepackage{varioref}
\end{verbatim}

In this last example, the package `varioref` will also see the option and will be able to use it.

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of hyphenation patterns as preloaded into the format, (2) a package option, (3) an ldf file, and (4) a name used in the document to select a language or dialect. So, a package option refers to a language in a generic way - sometimes it is the actual language name used to select it, sometimes it is a file name loading a language with a different name, sometimes it is a file name loading several languages. Please, read the documentation for specific languages for further info.
1.2 Multilingual documents

In multilingual documents, just use several options. The last one is considered the main language, activated by default. Sometimes, the main language changes the document layout (e.g., Spanish and French).

EXAMPLE In LATEX, the preamble of the document:

\begin{verbatim}
\documentclass{article}
\usepackage[english,dutch]{babel}
\end{verbatim}

would tell LATEX that the document would be written in two languages, Dutch and English, and that English would be the first language in use, and the main one.

You can also set the main language explicitly:

\begin{verbatim}
\documentclass{article}
\usepackage[main=english,dutch]{babel}
\end{verbatim}

WARNING Languages may be set as global and as package option at the same time, but in such a case you should set explicitly the main language with the package option main:

\begin{verbatim}
\documentclass[italian]{book}
\usepackage[ngerman,main=italian]{babel}
\end{verbatim}

WARNING In the preamble the main language has not been selected, except for hyphenation patterns and the name assigned to \texttt{languagename} (in particular, shorthands, captions and date are not activated). If you need to define boxes and the like in the preamble, you might want to use some of the language selectors described below.

To switch the language there are two basic macros, described below in detail: \texttt{\selectlanguage} is used for blocks of text, while \texttt{\foreignlanguage} is for chunks of text inside paragraphs.

EXAMPLE A full bilingual document follows. The main language is French, which is activated when the document begins.

\begin{verbatim}
\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english,french]{babel}

\begin{document}
Plus ça change, plus c’est la même chose!
\selectlanguage{english}
And an English paragraph, with a short text in
\foreignlanguage{french}{français}.
\end{document}
\end{verbatim}
1.3 Modifiers

New 3.9c The basic behaviour of some languages can be modified when loading babel by means of modifiers. They are set after the language name, and are prefixed with a dot (only when the language is set as package option – neither global options nor the main key accept them). An example is (spaces are not significant and they can be added or removed):\footnote{No predefined “axis” for modifiers are provided because languages and their scripts have quite different needs.}

\usepackage{latin.medieval, spanish.notilde.lcroman, danish}{babel}

Attributes (described below) are considered modifiers, ie, you can set an attribute by including it in the list of modifiers. However, modifiers is a more general mechanism.

1.4 xelatex and lualatex

Many languages are compatible with xetex and luatex. With them you can use babel to localize the documents, but an advanced interface to handle fonts is still under development (among other things, language and script will be set by babel). The Latin script is covered by default in current \LaTeX{} (provided the document encoding is UTF-8), because the font loader is preloaded and the font is switched to l\texttt{mroman}. Other scripts require loading \texttt{fontspec}.

EXAMPLE The following bilingual, single script document in UTF-8 encoding just prints a couple of ‘captions’ and \texttt{\today} in Danish and Vietnamese. No additional packages are required.

\begin{verbatim}
\documentclass{article}
\usepackage[vietnamese,danish]{babel}
\begin{document}
\prefacename{} -- \alsoname{} -- \today
\selectlanguage{vietnamese}
\prefacename{} -- \alsoname{} -- \today
\end{document}
\end{verbatim}

EXAMPLE Here is a simple monolingual document in Russian (text from the Wikipedia). Note neither \texttt{fontenc} nor \texttt{inputenc} are necessary, but the document should be encoded in UTF-8 and a so-called Unicode font must be loaded with \texttt{fontspec}.

\begin{verbatim}
\documentclass{article}
\usepackage[russian]{babel}
\usepackage[fontspec]
\setmainfont[Language=Russian, Script=Cyrillic]{DejaVu Serif}
\begin{document}
\end{document}
\end{verbatim}
1.5 Troubleshooting

- Loading directly sty files in \LaTeX (ie, \usepackage{⟨language⟩}) is deprecated and you will get the error:

```
! Package babel Error: You are loading directly a language style.  
(babel) This syntax is deprecated and you must use  
(babel) \usepackage[⟨language⟩]{babel}.
```

- Another typical error when using babel is the following:

```
! Package babel Error: Unknown language 'LANG'. Either you have misspelled  
(babel) its name, it has not been installed, or you requested  
(babel) it in a previous run. Fix its name, install it or just  
(babel) rerun the file, respectively
```

The most frequent reason is, by far, the latest (for example, you included spanish, but you realized this language is not used after all, and therefore you removed it from the option list). In most cases, the error vanishes when the document is typeset again, but in more severe ones you will need to remove the aux file.

- The following warning is about hyphenation patterns and it is not under the direct control of babel:

```
Package babel Warning: No hyphenation patterns were preloaded for  
(babel) the language 'LANG' into the format.  
(babel) Please, configure your TeX system to add them and  
(babel) rebuild the format. Now I will use the patterns  
(babel) preloaded for \language=∅ instead on input line 57.
```

The document will be typeset, but very likely the text will not be correctly hyphenated. Some languages may be raising this warning wrongly (because they are not hyphenated); it is a bug to be fixed – just ignore it. See the manual of your distribution (Mac\TeX, MiK\TeX, \TeX\Live, etc.) for further info about how to configure it.

1.6 Plain

In Plain, load languages styles with \input and then use \begindocument (the latter is defined by babel):

```
\input estonian.sty
\begindocument
```

Note not all languages provide a sty file and some of them are not compatible with Plain.\footnote{Even in the babel kernel there were some macros not compatible with plain. Hopefully these issues will be fixed soon.}
1.7 Basic language selectors

This section describes the commands to be used in the document to switch the language in multilingual document. In most cases, only the two basic macros \selectlanguage and \foreignlanguage are necessary. The environments otherlanguage, otherlanguage* and hyphenrules are auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

\selectlanguage{⟨language⟩}

When a user wants to switch from one language to another he can do so using the macro \selectlanguage. This macro takes the language, defined previously by a language definition file, as its argument. It calls several macros that should be defined in the language definition files to activate the special definitions for the language chosen:

\selectlanguage{german}

This command can be used as environment, too.

NOTE For “historical reasons”, a macro name is converted to a language name without the leading \; in other words, \selectlanguage{german} is equivalent to \selectlanguage{german}. Using a macro instead of a “real” name is deprecated.

WARNING If used inside braces there might be some non-local changes, as this would be roughly equivalent to:

\{\selectlanguage{<inner-language>} ...\}\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an additional grouping level.

\foreignlanguage{⟨language⟩}{⟨text⟩}

The command \foreignlanguage takes two arguments; the second argument is a phrase to be typeset according to the rules of the language named in its first one. This command (1) only switches the extra definitions and the hyphenation rules for the language, not the names and dates, (2) does not send information about the language to auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the language has not been set as package option (but in such a case it only sets the hyphenation patterns and a warning is shown).

1.8 Auxiliary language selectors

\begin{otherlanguage}{⟨language⟩} ... \end{otherlanguage}

The environment otherlanguage does basically the same as \selectlanguage, except the language change is (mostly) local to the environment. Actually, there might be some non-local changes, as this environment is roughly equivalent to:

\begingroup
\selectlanguage{<inner-language>}
\begin{otherlanguage}{<inner-language>}
\selectlanguage{⟨outer-language⟩}
\end{otherlanguage}
\end{group}
If you want a change which is really local, you must enclose this environment with an additional grouping, like braces {}.
Spaces after the environment are ignored.

\begin{otherlanguage*} {\langle language\rangle} ... \end{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces after the environment are not ignored.
This environment was originally intended for intermixing left-to-right typesetting with right-to-left typesetting in engines not supporting a change in the writing direction inside a line. However, by default it never complied with the documented behaviour and it is just a version as environment of \foreignlanguage.

\begin{hyphenrules} {\langle language\rangle} ... \end{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be used (it can be used as command, too). This can for instance be used to select ‘nohyphenation’, provided that in language.dat the ‘language’ nohyphenation is defined by loading zerohyph.tex. It deactivates language shorthands, too (but not user shorthands).
Except for these simple uses, hyphenrules is discouraged and otherlanguage* (the starred version) is preferred, as the former does not take into account possible changes in encodings of characters like, say, ‘ done by some languages (eg, italian, french, ukraineb). To set hyphenation exceptions, use \babelhyphenation (see below).

1.9 More on selection

\babeltags {\langle tag1 \rangle = \langle language1 \rangle, \langle tag2 \rangle = \langle language2 \rangle, ...}

New 3.9i In multilingual documents with many language switches the commands above can be cumbersome. With this tool shorter names can be defined. It adds nothing really new - it is just syntactical sugar.
It defines \text{\langle tag1 \rangle}{\langle text \rangle} to be \foreignlanguage{\langle language1 \rangle}{\langle text \rangle}, and \begin{\langle tag1 \rangle} to be \begin{otherlanguage*}{\langle language1 \rangle}, and so on. Note \langle tag1 \rangle is also allowed, but remember to set it locally inside a group.

EXAMPLE With

\begin{verbatim}
\babeltags{de = german}
\end{verbatim}

you can write

\begin{verbatim}
text \textde{German text} text
\end{verbatim}

and

\begin{verbatim}
text
\begin{de}
 German text
\end{de}
text
\end{verbatim}
NOTE Something like \betalgs{finnish = finnish} is legitimate – it defines \textfinnish and \finnish (and, of course, \begin{finnish}).

\betalensure [include=(commands), exclude=(commands), fontenc=(encoding)]\{\lang\}

New 3.9i Except in a few languages, like Russian, captions and dates are just strings, and do not switch the language. That means you should set it explicitly if you want to use them, or hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text} \foreignlanguage{polish}{\seename} text

Of course, TeX can do it for you. To avoid switching the language all the while, \betalensure redefines the captions for a given language to wrap them with a selector:

\betalensure{polish}

By default only the basic captions and \today are redefined, but you can add further macros with the key include in the optional argument (without commas). Macros not to be modified are listed in exclude. You can also enforce a font encoding with fontenc.\footnote{With it encoded string may not work as expected.} A couple of examples:

\betalensure[include=\Today]{spanish}
\betalensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it makes some assumptions which could not be fulfilled in some languages. Note also you should include only macros defined by the language, not global macros (e.g., \TeX of \dag).

1.10 Getting the current language name

\languagename The control sequence \languagename contains the name of the current language.

WARNING Due to some internal inconsistencies in catcodes it should not be used to test its value. Use \iflang, by Heiko Oberdiek.

\iflanguage \{\lang\}\{true\}\{false\}

If more than one language is used, it might be necessary to know which language is active at a specific time. This can be checked by a call to \iflanguage, but note here “language” is used in the TeX sense, as a set of hyphenation patterns, and not as its babel name. This macro takes three arguments. The first argument is the name of a language; the second and third arguments are the actions to take if the result of the test is true or false respectively.

WARNING The advice about \languagename also applies here – use \iflang instead of \iflanguage if possible.
1.11 Selecting scripts

Currently babel provides no standard interface to select scripts, because they are best selected with either \fontencoding (low level) or a language name (high level). Even the Latin script may require different encodings (ie, sets of glyphs) depending on the language, and therefore such a switch would be in a sense incomplete. Some languages sharing the same script define macros to switch it (eg, \textcyrillic), but be aware they may also set the language to a certain default. Even the babel core defined \textlatin, but is was somewhat buggy because in some cases it messed up encodings and fonts (for example, if the main latin encoding was LY1), and therefore it has been deprecated.

No macros to select the writing direction are provided, either – writing direction is intrinsic to each script and therefore it is best set by the language (which could be a dummy one). Furthermore, there are in fact two right-to-left modes, depending on the language, which differ in the way ‘weak’ numeric characters are ordered (Arabic %123 vs Hebrew 123%).

\ensureasci

\{\langle text\rangle\}

New 3.9i This macro makes sure \langle text\rangle is typeset with a LICR-savvy encoding in the ASCII range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, X2, OT2, OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and \LaTeX are not redefined); otherwise, \ensureasci switches to the encoding at the beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For example, if you load LY1, LGR, then it is set to LY1, but if you load LY1, T2A it is set to T2A. The symbol encodings TS1, T3, and T53 are not taken into account, since they are not used for “ordinary” text.

The foregoing rules (which are applied “at begin document”) cover most of cases. No assumption is made on characters above 127, which may not follow the LICR conventions – the goal is just to ensure most of the ASCII letters and symbols are the right ones.

1.12 Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary \TeX code.

Shorthands can be used for different kinds of things, as for example: (1) in some languages shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1; (2) in some languages shorthands such as ! are used to insert the right amount of white space; (3) several kinds of discretionaries and breaks can be inserted easily with ".", "=, etc.

The package inputenc as well as xetex an luatex have alleviated entering non-ASCII characters, but minority languages and some kinds of text can still require characters not directly available on the keyboards (and sometimes not even as separated or precomposed Unicode characters). As to the point 2, now pdfTeX provides \tnbcode, and luatex can manipulate the glyph list. Tools for point 3 can be still very useful in general.

\footnote{The so-called Unicode fonts do not improve the situation either. So, a font suited for Vietnamese is not necessarily suited for, say, the romanization of Indic languages, and the fact it contains glyphs for Modern Greek does not mean it includes them for Classic Greek. As to directionality, it poses special challenges because it also affects individual characters and layout elements.}

\footnote{But still defined for backwards compatibility.}
There are three levels of shorthands: user, language, and system (by order of precedence). Version 3.9 introduces the language user level on top of the user level, as described below. In most cases, you will use only shorthands provided by languages.

Please note the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace } and the spaces following are gobbled. With one-char shorthands (eg, :), they are preserved.

2. If on a certain level (system, language, user) there is a one-char shorthand, two-char ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition (except if it is deactivated with, eg, string).

A typical error when using shorthands is the following:

```
! Argument of \language@active@arg" has an extra }.
```

It means there is a closing brace just after a shorthand, which is not allowed (eg, "{}"). Just add { after (eg, "{}").

\shorthandon \{\shorthandsl{ist}\} \star{\{\shorthandsl{ist}\}}

It is sometimes necessary to switch a shorthand character off temporarily, because it must be used in an entirely different way. For this purpose, the user commands \shorthandoff and \shorthandon are provided. They each take a list of characters as their arguments.

The command \shorthandoff sets the \catcode for each of the characters in its argument to other (12); the command \shorthandon sets the \catcode to active (13). Both commands only work on `known' shorthand characters. If a character is not known to be a shorthand character its category code will be left unchanged.

New 3.9a However, \shorthandoff does not behave as you would expect with characters like ~ or ^, because they usually are not "other". For them \shorthandoff* is provided, so that with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the superscript character. The catcodes used are those when the shorthands are defined, usually when language files are loaded.

\useshorthands \star{(char)}

The command \useshorthands initiates the definition of user-defined shorthand sequences. It has one argument, the character that starts these personal shorthands.

New 3.9a User shorthands are not always alive, as they may be deactivated by languages (for example, if you use " for your user shorthands and switch from german to french, they stop working). Therefore, a starred version \useshorthands*{(char)} is provided, which makes sure shorthands are always activated.

Currently, if the package option shorthands is used, you must include any character to be activated with \useshorthands. This restriction will be lifted in a future release.
\defineshorthand \{⟨language⟩,⟨language⟩,...\}{⟨shorthand⟩}{⟨code⟩}

The command \defineshorthand takes two arguments: the first is a one- or two-character shorthand sequence, and the second is the code the shorthand should expand to.

New 3.9a An optional argument allows to (re)define language and system shorthands (some languages do not activate shorthands, so you may want to add \languageshorthands{⟨lang⟩} to the corresponding \extras{⟨lang⟩}). By default, user shorthands are (re)defined. User shorthands override language ones, which in turn override system shorthands. Language-dependent user shorthands (new in 3.9) take precedence over “normal” user shorthands.

EXAMPLE Let’s assume you want a unified set of shorthand for discretionaries (languages do not define shorthands consistently, and "-, \-, "+ have different meanings). You could start with, say:

\useshorthands*{*}
\defineshorthand{*}{\babelhyphen{soft}}
\defineshorthand{-}{\babelhyphen{hard}}

However, behaviour of hyphens is language dependent. For example, in languages like Polish and Portuguese, a hard hyphen inside compound words are repeated at the beginning of the next line. You could then set:

\defineshorthand{*polish,*portugese}{-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the generic one above only applies for the rest of languages; without * they would (re)define the language shorthands instead, which are overridden by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning (‘compound word hyphen’) whose visual behavior is that expected in each context.

\aliasshorthand \{(original)\}{(alias)\}

The command \aliasshorthand can be used to let another character perform the same functions as the default shorthand character. If one prefers for example to use the character / over " in typing Polish texts, this can be achieved by entering \aliasshorthand{"}{/}. Please note the substitute character must not have been declared before as shorthand (in such case, \aliasshorthand is ignored).

The following example shows how to replace a shorthand by another:

\aliasshorthand{-}{*}
\AtBeginDocument{\shorthandoff{-}}

However, shorthands remember somehow the original character, and the fallback value is that of the latter. So, in this example, if no shorthand if found, ^ expands to a non-breaking space, because this is the value of ~ (internally, ^ calls \active@char~ or \normal@char~). Furthermore, if you change the system value of ^ with \defineshorthand nothing happens.

\languageshorthands \{⟨language⟩\}

The command \languageshorthands can be used to switch the shorthands on the language level. It takes one argument, the name of a language or none (the latter
does what its name suggests).\footnote{Actually, any name not corresponding to a language group does the same as none. However, follow this convention because it might be enforced in future releases of babel to catch possible errors.} Note that for this to work the language should have been specified as an option when loading the babel package. For example, you can use in English the shorthands defined by ngerman with

```
\addto\extrasenglish{\languageshorthands{ngerman}}
```

(You may also need to activate them with, for example, `\useshorthands`.)

Very often, this is a more convenient way to deactivate shorthands than `\shorthandoff`, as for example if you want to define a macro to easy typing phonetic characters with tipa:

```
\newcommand{\myipa}{\languageshorthands{none}\tipaencoding#1}
```

\begin{verbatim}
\babelshorthand
\end{verbatim}

With this command you can use a shorthand even if (1) not activated in shorthands (in this case only shorthands for the current language are taken into account, i.e., not user shorthands), (2) turned off with `\shorthandoff` or (3) deactivated with the internal `\bbl@deactivate`; for example, `\babelshorthand{"u}` or `\babelshorthand{:\}`. (You can conveniently define your own macros, or even you own user shorthands provided they do not overlap.)

For your records, here is a list of shorthands, but you must double check them, as they may change:\footnote{Thanks to Enrico Gregorio}

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew, Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish, Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian, Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script), Slovene, Swedish, Ukrainian, Upper Sorbian

- **Basque** " ’ ~
- **Breton** : ; ? !
- **Catalan** " ‘ \`
- **Czech** " -
- **Esperanto** ^
- **Estonian** " ~
- **French** (all varieties) : ; ? !
- **Galician** " . ’ ~ < >
- **Greek** ~
- **Hungarian** .
- **Kurmanji** ^
- **Latin** " ^ =
- **Slovak** " ^ ‘ -
- **Spanish** " . < > ‘
- **Turkish** : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the standard ~, to a non breaking space.\footnote{This declaration serves to nothing, but it is preserved for backward compatibility.}
1.13 Package options

These package options are processed before language options, so that they are taken into account irrespective of its order. The first three options have been available in previous versions.

KeepShorthandsActive
Tells babel not to deactivate shorthands after loading a language file, so that they are also available in the preamble.

activeacute
For some languages babel supports this options to set ' as a shorthand in case it is not done by default.

activegrave
Same for `.

shorthand=
The only language shorthands activated are those given, like, eg:

```
\usepackage[esperanto,french,shorthands=::;!]{babel}
```

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters (like ~) should be preceded by \string (otherwise they will be expanded by \LaTeX before they are passed to the package and therefore they will not be recognized); however, t is provided for the common case of ~ (as well as c for not so common case of the comma).

With shorthand=off no language shorthands are defined, As some languages use this mechanism for tools not available otherwise, a macro \babelshorthand is defined, which allows using them; see above.

safe=
Some \LaTeX macros are redefined so that using shorthands is safe. With safe=bib only \nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and \pageref are redefined (as well as a few macros from varioref and ifthen). With safe=none no macro is redefined. This option is strongly recommended, because a good deal of incompatibilities and errors are related to these redefinitions – of course, in such a case you cannot use shorthands in these macros, but this is not a real problem (just use “allowed” characters).

math=
Shorthands are mainly intended for text, not for math. By setting this option with the value normal they are deactivated in math mode (default is active) and things like ${a'}$ (a closing brace after a shorthand) are not a source of trouble any more.

config=
Load (file).cfg instead of the default config file bblopts.cfg (the file is loaded even with noconfigs).

main=
Sets the main language, as explained above, ie, this language is always loaded last. If it is not given as package or global option, it is added to the list of requested languages.
headfoot= \textit{language} \hspace{1cm}
By default, headlines and footlines are not touched (only marks), and if they contain language dependent macros (which is not usual) there may be unexpected results. With this option you may set the language in heads and foots.

noconfigs \hspace{1cm}
Global and language default config files are not loaded, so you can make sure your document is not spoilt by an unexpected .cfg file. However, if the key config is set, this file is loaded.

showlanguages \hspace{1cm}
Prints to the log the list of languages loaded when the format was created: number (remember dialects can share it), name, hyphenation file and exceptions file.

nocase New 3.9i \hspace{1cm} Language settings for uppercase and lowercase mapping (as set by \texttt{\textbackslash SetCase}) are ignored. Use only if there are incompatibilities with other packages.

silent New 3.9i \hspace{1cm} No warnings and no \textit{infos} are written to the log file.11

strings= \hspace{1cm} generic | unicode | encoded | \textit{(label)} | \textit{(font encoding)} \hspace{1cm}
Selects the encoding of strings in languages supporting this feature. Predefined labels are generic (for traditional \texttt{\LaTeX}, LICR and ASCII strings), unicode (for engines like \texttt{xetex} and \texttt{luatex}) and encoded (for special cases requiring mixed encodings). Other allowed values are font encoding codes (T1, T2A, LGR, L7X...), but only in languages supporting them. Be aware with encoded captions are protected, but they work in \texttt{\textbackslash MakeUppercase} and the like (this feature misuses some internal \texttt{\LaTeX} tools, so use it only as a last resort).

hyphenmap= \hspace{1cm} off | main | select | other | other* \hspace{1cm}
\textbf{New 3.9g} \hspace{1cm} Sets the behaviour of case mapping for hyphenation, provided the language defines it.12 It can take the following values:

\hspace{1cm} off \hspace{1cm} deactivates this feature and no case mapping is applied;

\hspace{1cm} first \hspace{1cm} sets it at the first switching commands in the current or parent scope (typically, when the aux file is first read and at \texttt{\begin{document}}, but also the first \texttt{\selectlanguage} in the preamble), and it's the default if a single language option has been stated;13

\hspace{1cm} select \hspace{1cm} sets it only at \texttt{\selectlanguage};

\hspace{1cm} other \hspace{1cm} also sets it at otherlanguage;

\hspace{1cm} other* \hspace{1cm} also sets it at otherlanguage* as well as in heads and foots (if the option headfoot is used) and in auxiliary files (ie, at \texttt{\select@language}), and it's the default if several language options have been stated. The option first can be regarded as an optimized version of other* for monolingual documents.14

1.14 The base option

With this package option babel just loads some basic macros (those in \texttt{switch.def}), defines \texttt{\textbackslash AfterBabelLanguage} and exits. It also selects the hyphenation patterns

11You can use alternatively the package silence.

12Turned off in plain.

13Duplicated options count as several ones.

14Providing foreign is pointless, because the case mapping applied is that at the end of paragraph, but if either xetex or luatex change this behaviour it might be added. On the other hand, other is provided even if I [JBL] think it isn't really useful, but who knows.
for the last language passed as option (by its name in language.dat). There are two main uses: classes and packages, and as a last resort in case there are, for some reason, incompatible languages. It can be used if you just want to select the hyphenations patterns of a single language, too.

\AfterBabelLanguage \{\langle option-name\rangle\} \{\langle code\rangle\}

This command is currently the only provided by base. Executes \langle code \rangle when the file loaded by the corresponding package option is finished (at \ldf@finish). The setting is global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the code is executed only if \langle option-name \rangle is the same as \CurrentOption (which could not be the same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with \newcommand. An error is raised if you attempt to load both. Here is a way to overcome this problem:

\usepackage[base]{babel}
\AfterBabelLanguage{foo}{%
\let\macroFoo\macro
\let\macro\relax%
\usepackage[foo,bar]{babel}

1.15 Creating a language

New 3.10 And what if there is no style for your language or none fits your needs? You may then define quickly a language with the help of the following macro in the preamble.

\babelprovide \{\langle options\rangle\} \{\langle language-name\rangle\}

Defines the internal structure of the language with some defaults: the hyphen rules, if not available, are set to the current ones, left and right hyphen mins are set to 2 and 3, but captions and date are not defined. Conveniently, babel warns you about what to do. Very likely you will find alerts like that in the log file:

Package babel Warning: \mylangchaptername not set. Please, define\{ babel \} it in the preamble with something like: \{ babel \} \renewcommand\mylangchaptername{..} \{ babel \} Reported on input line 18.

In most cases, you will only need to define a few macros.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}
\babelprovide{arhinish}
\renewcommand\arhinishchaptername{Chapitula}
\renewcommand\arhinishrefname{Refirenke}
\renewcommand\arhinishhyphenmins{22}

The main language is not changed (danish in this example). So, you must add \selectlanguage{arhinish} or other selectors where necessary. If the language has been loaded as an argument in \documentclass or \usepackage, then \babelprovide redefines the requested data.
import= \{language-tag\}

New 3.13 Imports data from an ini file, including captions, date, and hyphenmins. For example:

\babelprovide[import=hu]{hungarian}

Unicode engines load the UTF-8 variants, while 8-bit engines load the LICR (i.e., with macros like \' or \ss) ones.

There are about 200 ini files, with data taken from the \ldf files and the CLDR provided by Unicode. Not all languages in the latter are complete, and therefore neither are the ini files. A few languages will show a warning about the current lack of suitability of the date format (hindi, french, breton, and occitan).

Besides \today, there is a \langdate macro with three arguments: year, month and day numbers. In fact, \today calls \langdate\today which in turn calls \langdate\year{\month}{\day}.

Encoding, font, fontspec language and script, writing direction, etc., are not touched at all. They will be loaded in the future and used in a forthcoming set of tools to set the language fonts.

captions= \{language-tag\}

Loads only the strings. For example:

\babelprovide[captions=hu]{hungarian}

Encoding, font, fontspec language and script, writing direction, etc., are not touched at all.

hyphenrules= \{language-list\}

With this option, with a space-separated list of hyphenation rules, babel assigns to the language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behaviour applies. Note in this example we set chavacano as first option – without it, it would select spanish even if chavacano exists.

A special value is +, which allocates a new language (in the \TeX sense). It only makes sense as the last value (or the only one; the subsequent ones are silently ignored). It is mostly useful with \luatex, because you can add some patterns with \bapelpatterns, as for example:

\babelprovide[hyphenrules=+]{neo}
\bapelpatterns{neo}{a1 e1 i1 o1 u1}

In other engines it just suppresses hyphenation (because the pattern list is empty).

main

This valueless option makes the language the main one. Only in newly defined languages.

NOTE (1) If you need shorthands, you can use \useshorthands and \defineshorthand as described above. (2) Captions and \today are “ensured” with \bapelensure (because this will be the default in ini-based languages).

1.16 Hooks

New 3.9a A hook is a piece of code to be executed at certain events. Some hooks are predefined when \luatex and \xetex are used.
\AddBabelHook \{\langle name\rangle\}\{\langle event\rangle\}\{\langle code\rangle\}

The same name can be applied to several events. Hooks may be enabled and disabled for all defined events with \EnableBabelHook{\langle name\rangle}, \DisableBabelHook{\langle name\rangle}. Names containing the string babel are reserved (they are used, for example, by \useshortands* to add a hook for the event afterextras).

Current events are the following; in some of them you can use one to three \TeX parameters (#1, #2, #3), with the meaning given:

add dialect (language name, dialect name) Used by luababel.def to load the patterns if not preloaded.

patterns (language name, language with encoding) Executed just after the \language has been set. The second argument has the patterns name actually selected (in the form of either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before exceptions given in \babelhyphenation are actually set.

default commands Used (locally) in \StartBabelCommands.

encoded commands (input, font encodings) Used (locally) in \StartBabelCommands.

Both xetex and luatex make sure the encoded text is read correctly.

stop commands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

before extras Just before executing \extras\langle language\rangle. This event and the next one should not contain language-dependent code (for that, add it to \extras\langle language\rangle).

after extras Just after executing \extras\langle language\rangle. For example, the following deactivates shorthands in all languages:

\AddBabelHook{\langle name\rangle}{\langle event\rangle}{\langle code\rangle}

string process Instead of a parameter, you can manipulate the macro \BabelString containing the string to be defined with \SetString. For example, to use an expanded version of the string in the definition, write:

\AddBabelHook{\langle name\rangle}{\langle event\rangle}{\langle code\rangle}

initiate active (char as active, char as other, original char) New 3.9i Executed just after a shorthand has been ‘initiated’. The three parameters are the same character with different catcodes: active, other (\string’ed) and the original one.

after reset New 3.9i Executed when selecting a language just after \original\TeX{} is run and reset to its base value, before executing \captions\langle language\rangle and \date\langle language\rangle.

Four events are used in hyphen.cfg, which are handled in a quite different way for efficiency reasons - unlike the precedent ones, they only have a single hook and replace a default definition.

every language (language) Executed before every language patterns are loaded.

load kernel (file) By default loads switch.def. It can be used to load a different version of this file or to load nothing.

load patterns (patterns file) Loads the patterns file. Used by luababel.def.

load exceptions (exceptions file) Loads the exceptions file. Used by luababel.def.
This macro contains a list of “toc” types which require a command to switch the language. Its default value is \texttt{toc,lof,lot}, but you may redefine it with \texttt{\renewcommand} (it’s up to you to make sure no toc type is duplicated).

1.17 Hyphenation tools

\texttt{\babelhyphen{soft}} and \texttt{\babelhyphen{hard}} are self explanatory.

\texttt{\babelhyphen{repeat}} inserts a hard hyphen which is repeated at the beginning of the next line, as done in languages like Polish, Portuguese and Spanish.

\texttt{\babelhyphen{nobreak}} inserts a hard hyphen without a break after it (even if a space follows).

\texttt{\babelhyphen{empty}} inserts a break opportunity without a hyphen at all.

\texttt{\babelhyphen{⟨text⟩}} is a hard “hyphen” using \texttt{⟨text⟩} instead. A typical case is \texttt{\babelhyphen{⟨/⟩}}.

With all of them hyphenation in the rest of the word is enabled. If you don’t want enabling it, there is a starred counterpart: \texttt{\babelhyphen*{soft}} (which in most cases is equivalent to the original \texttt{\-}), \texttt{\babelhyphen*{hard}}, etc.

Note hard is also good for isolated prefixes (eg, \texttt{anti}) and nobreak for isolated suffixes (eg, \texttt{-ism}), but in both cases \texttt{\babelhyphen*{nobreak}} is usually better. There are also some differences with \LaTeX: (1) the character used is that set for the current font, while in \LaTeX it is hardwired to \texttt{-} (a typical value); (2) the hyphen to be used in fonts with a negative \texttt{\hyphenchar} is \texttt{-}, like in \LaTeX, but it can be changed to another value by redefining \texttt{\babelnullhyphen}; (3) a break after the hyphen is forbidden if preceded by a glue \texttt{>0 pt} (at the beginning of a word, provided it is not immediately preceded by, say, a parenthesis).

\texttt{\babelhyphenation{⟨/language⟩,...}{⟨exceptions⟩}}

Sets hyphenation exceptions for the languages given or, without the optional argument, for \textit{all} languages (eg, proper nouns or common loan words, and of course monolingual documents). Language exceptions take precedence over global ones.
It can be used only in the preamble, and exceptions are set when the language is first selected, thus taking into account changes of \lcodes's done in \extras{lang} as well as the language specific encoding (not set in the preamble by default). Multiple \babelhyphenation's are allowed. For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also works without the LICR if the input and the font encodings are the same, like in Unicode based engines.

1.18 Language attributes

This is a user-level command, to be used in the preamble of a document (after \usepackage{ babel}), that declares which attributes are to be used for a given language. It takes two arguments: the first is the name of the language; the second, a (list of) attribute(s) to be used. Attributes must be set in the preamble and only once - they cannot be turned on and off. The command checks whether the language is known in this document and whether the attribute(s) are known for this language.

Very often, using a modifier in a package option is better.

Several language definition files use their own methods to set options. For example, french uses \frenchsetup, magyar (1.5) uses \magyarOptions; modifiers provided by spanish have no attribute counterparts. Macros setting options are also used (eg, \ProsodicMarksOn in latin).

1.19 Languages supported by babel

In the following table most of the languages supported by babel are listed, together with the names of the options which you can load babel with for each language. Note this list is open and the current options may be different.

<table>
<thead>
<tr>
<th>Language</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrikaans</td>
<td>afrikaans</td>
</tr>
<tr>
<td>Bahasa</td>
<td>bahasa, indonesian, indon, bahasai, bahasam, malay, melayu</td>
</tr>
<tr>
<td>Basque</td>
<td>basque</td>
</tr>
<tr>
<td>Breton</td>
<td>breton</td>
</tr>
<tr>
<td>Bulgarian</td>
<td>bulgarian</td>
</tr>
<tr>
<td>Catalan</td>
<td>catalan</td>
</tr>
<tr>
<td>Croatian</td>
<td>crotanian</td>
</tr>
<tr>
<td>Czech</td>
<td>czech</td>
</tr>
</tbody>
</table>

15With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a separate package and babel only provides the most basic tools.
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british, canadian, australian, newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, franais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Icelandic icelandic
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

There are more languages not listed above, including hindi, thai, thai ck, latvian, turkmen, magyar, mongolian, romansh, lithuanian, spanglish, vietnamese, japanese, pinyin, arabic, farsi, ibygreek, bgreek, serbian, frenchle, ethiop and friulan. Most of them work out of the box, but some may require extra fonts, encoding files, a preprocessor or even a complete framework (like CJK). For example, if you have got the velthuis/devnag package, you can create a file with extension .dn:

\documentclass{article}
\usepackage[hindi]{babel}
\begin{document}
{\dn devaanaa.m priya.h}
\end{document}

Then you preprocess it with devnag (file), which creates (file).tex; you can then typeset the latter with \LaTeX.

1.20 Tips, workarounds, know issues and notes

• If you use the document class book and you use \ref inside the argument of \chapter (or just use \ref inside \MakeUppercase), \LaTeX will keep complaining
about an undefined label. To prevent such problems, you could revert to using uppercase labels, you can use `\lowercase{\ref{foo}}` inside the argument of `\chapter`, or, if you will not use shorthands in labels, set the `safe` option to `none` or `bib`.

- Both `ltxdoc` and `b babel` use `\AtBeginDocument` to change some catcodes, and babel reloads `hhline` to make sure : has the right one, so if you want to change the catcode of | it has to be done using the same method at the proper place, with

\begin{verbatim}
\AtBeginDocument{\DeleteShortVerb{\|}}
\end{verbatim}

before loading babel. This way, when the document begins the sequence is (1) make | active (`ltxdoc`); (2) make it unactive (your settings); (3) make babel shorthands active (`b babel`); (4) reload `hhline` (`b babel`, now with the correct catcodes for | and :).

- Documents with several input encodings are not frequent, but sometimes are useful. You can set different encodings for different languages as the following example shows:

\begin{verbatim}
\addto\extrasfrench\{\inputencoding{latin1}\}
\addto\extrarsussian\{\inputencoding{koi8-r}\}
\end{verbatim}

(A recent version of `inputenc` is required.)

- For the hyphenation to work correctly, lccodes cannot change, because `TeX` only takes into account the values when the paragraph is hyphenated, i.e., when it has been finished.16 So, if you write a chunk of French text with `\foreignlanguage`, the apostrophes might not be taken into account. This is a limitation of `TeX`, not of babel. Alternatively, you may use `\useshorthands` to activate ' and `\defineshorthand`, or redefine `\textquoteright` (the latter is called by the non-ASCII right quote).

- `\bibitem` is out of sync with `\selectlanguage` in the `.aux` file. The reason is `\bibitem` uses `\immediate` (and others, in fact), while `\selectlanguage` doesn’t. There is no known workaround.

- Babel does not take into account `\normalsf` and (non-)French spacing is not always properly (un)set by languages. However, problems are unlikely to happen and therefore this part remains untouched in version 3.9 (but it is in the ‘to do’ list).

- Using a character mathematically active (ie, with math code "8000) as a shorthand can make `TeX` enter in an infinite loop in some rare cases. (Another issue in the ‘to do’ list, although there is a partial solution.)

The following packages can be useful, too (the list is still far from complete):

- **csquotes** Logical markup for quotes.
- **iflang** Tests correctly the current language.
- **hyphsubst** Selects a different set of patterns for a language.
- **translator** An open platform for packages that need to be localized.
- **siunitx** Typesetting of numbers and physical quantities.
- **biblatex** Programmable bibliographies and citations.

16This explains why `\LaTeX` assumes the lowercase mapping of T1 and does not provide a tool for multiple mappings. Unfortunately, `\savinghyphcodes` is not a solution either, because lccodes for hyphenation are frozen in the format and cannot be changed.
bicaption Bilingual captions.
babelbib Multilingual bibliographies.
microtype Adjusts the typesetting according to some languages (kerning and spacing). Ligatures can be disabled.
substitutefont Combines fonts in several encodings.
mkpatter Generates hyphenation patterns.
tracklang Tracks which languages have been requested.

1.21 Future work

Useful additions would be, for example, time, currency, addresses and personal
names. But that is the easy part, because they don’t require modifying the \LaTeX
internals.

More interesting are differences in the sentence structure or related to it. For
example, in Basque the number precedes the name (including chapters), in
Hungarian “from (1)” is “(1)-ből”, but “from (3)” is “(3)-ből”, in Spanish an item
labelled “3.” may be referred to as either “ítem 3.º” or “3.º ítem”, and so on.
Even more interesting is right-to-left, vertical and bidi typesetting. Babel provided
a basic support for bidi text as part of the style for Hebrew, but it is somewhat
unsatisfactory and internally replaces some hardwired commands by other
hardwired commands (generic changes would be much better).

1.22 Tentative and experimental code

Handling of “Unicode” fonts is problematic. There is fontspec, but special macros
are required (not only the NFSS ones) and it doesn’t provide “orthogonal axis” for
features, including those related to the language (mainly language and script). A
couple of tentative macros, which solve the two main cases, are provided by babel
(≥3.9g) with a partial solution (only xetex and luatex, for obvious reasons), but use
them at your own risk, as they might be removed in the future.

\begin{itemize}
 \item \texttt{\textbackslash babelFSstore}\{\texttt{\langle babel-language\rangle}\} sets the current three basic families (rm, sf, tt) as the default for the language given. In most cases, this macro will be enough.
 \item \texttt{\textbackslash babelFSdefault}\{\texttt{\langle babel-language\rangle}\}{\texttt{\langle fontspec-features\rangle}} patches \fontspec so that the given features are always passed as the optional argument or added to it (not an ideal solution). Use it only if you select some fonts in the document with \texttt{\fontspec}.
\end{itemize}

So, for example:

\begin{verbatim}
\setmainfont[Language=Turkish]{Minion Pro}
\setsansfont[Language=Turkish]{Myriad Pro}
\babelFSstore{turkish}
\setmainfont{Minion Pro}
\setsansfont{Myriad Pro}
\babelFSfeatures{turkish}{Language=Turkish}
\end{verbatim}

Note you can set any feature required for the language - not only Language, but
also Script and even raw features. This makes those macros a bit more verbose,
but also more powerful.

Bidi writing is taking its \textit{first steps}. Here is a simple example:

\begin{verbatim}
\begin{verbatim}
\end{verbatim}
\end{verbatim}

\footnote{See for example POSIX, ISO 14652 and the Unicode Common Locale Data Repository (CLDR). Those system, however, have limited application to \LaTeX because their aim is just to display information and not fine typesetting.}
First steps mean exactly that. For example, in \texttt{luatex} digits and short Latin texts must be marked up explicitly in RL mode. On the other hand, \texttt{xetex} poses quite different challenges. The bidi mechanism is activated when an RL script is passed as the new optional argument of \texttt{babelFSstore}.

See the code section for \texttt{\foreignlanguage*} (a new starred version of \texttt{\foreignlanguage}).

2 Loading languages with \texttt{language.dat}

\TeX{} and most engines based on it (pdf\TeX{}, \texttt{xetex}, \texttt{\epsilon-\TeX{}}, the main exception being \texttt{luatex}) require hyphenation patterns to be preloaded when a format is created (eg. \texttt{\LaTeX{}}, \texttt{\XeLaTeX{}}, \texttt{pdf\LaTeX{}}). \texttt{babel} provides a tool which has become standard in many distributions and based on a “configuration file” named \texttt{language.dat}. The exact way this file is used depends on the distribution, so please, read the documentation for the latter (note also some distributions generate the file with some tool).

New 3.9q

With \texttt{luatex}, however, patterns are loaded on the fly when requested by the language (except the “0th” language, typically English, which is preloaded always).\footnote{This feature was added to 3.9o, but it was buggy. Both 3.9o and 3.9p are deprecated.} Until 3.9n, this task was delegated to the package \texttt{luatex-hyphen}, by Khaled Hosny, Élie Roux, and Manuel Pégourié-Gonnard, and required an extra file named \texttt{language.dat.lua}, but now a new mechanism has been devised based solely on \texttt{language.dat}. You must rebuild the formats if upgrading from a previous version. You may want to have a local \texttt{language.dat} for a particular project (for example, a book on Chemistry).\footnote{The loader for lua(\texttt{e})\TeX{} is slightly different as it’s not based on \texttt{babel} but on \texttt{etex.src}. Until 3.9p it just didn’t work, but thanks to the new code it works by reloading the data in the \texttt{babel} way, i.e., with \texttt{language.dat}.}

Unfortunately, the new model is intrinsically incompatible with the previous one, which means you can experience some problems with polyglossia. If using the latter, you must load the patterns with \texttt{babel} as shown in the following example:

\begin{verbatim}
\usepackage{base,french,dutch,spanish,english}{babel}
\usepackage{polyglossia}
\setmainlanguage{french}
\setotherlanguages{dutch,spanish,english}
\end{verbatim}

Be aware this is, very likely, a temporary solution.

2.1 Format

In that file the person who maintains a \texttt{\LaTeX{}} environment has to record for which languages he has hyphenation patterns and in which files these are stored\footnote{This is because different operating systems sometimes use very different file-naming conventions.}. When
hyphenation exceptions are stored in a separate file this can be indicated by naming that file after the file with the hyphenation patterns. The file can contain empty lines and comments, as well as lines which start with an equals (=) sign. Such a line will instruct \LaTeX that the hyphenation patterns just processed have to be known under an alternative name. Here is an example:

```latex
\% File : language.dat
\% Purpose : tell \LaTeX what files with patterns to load.
english  english.hypenations =british
dutch   hyphen.dutch exceptions.dutch \% Nederlands
german  hyphen.ger
```

You may also set the font encoding the patterns are intended for by following the language name by a colon and the encoding code.\footnote{This is not a new feature, but in former versions it didn’t work correctly.} For example:

```latex
german:T1 hyphenT1.ger
german hyphen.ger
```

With the previous settings, if the encoding when the language is selected is T1 then the patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the encoding could be set in \extras\langle lang\rangle).

A typical error when using \texttt{babel} is the following:

```
No hyphenation patterns were preloaded for
the language `<lang>' into the format.
Please, configure your \TeX system to add them and
rebuild the format. Now I will use the patterns
preloaded for english instead)}
```

It simply means you must reconfigure language.dat, either by hand or with the tools provided by your distribution.

\section{The interface between the core of babel and the language definition files}

The \textit{language definition files} (ldf) must conform to a number of conventions, because these files have to fill in the gaps left by the common code in babel.def, i.e., the definitions of the macros that produce texts. Also the language-switching possibility which has been built into the babel system has its implications. The following assumptions are made:

- Some of the language-specific definitions might be used by plain \TeX users, so the files have to be coded so that they can be read by both \LaTeX and plain \TeX. The current format can be checked by looking at the value of the macro \texttt{\fmtname}.

- The common part of the babel system redefines a number of macros and environments (defined previously in the document style) to put in the names of macros that replace the previously hard-wired texts. These macros have to be defined in the language definition files.

- The language definition files must define five macros, used to activate and deactivate the language-specific definitions. These macros are
\langle lang \rangle \text{hyphenmins}, \langle captions \rangle, \langle date \rangle, \langle extras \rangle \langle lang \rangle and \langle noextras \rangle \langle lang \rangle (the last two may be left empty); where \langle lang \rangle is either the name of the language definition file or the name of the \LaTeX{} option that is to be used. These macros and their functions are discussed below. You must define all or none for a language (or a dialect); defining, say, \langle date \rangle but not \langle captions \rangle does not raise an error but can lead to unexpected results.

- When a language definition file is loaded, it can define \langle l@\rangle when \langle l@\rangle is undefined.
- Language names must be all lowercase. If an unknown language is selected, babel will attempt setting it after lowering its name.
- The semantics of modifiers is not defined (on purpose). In most cases, they will just be simple separated options (eg, spanish), but a language might require, say, a set of options organized as a tree with suboptions (in such a case, the recommended separator is /).

Some recommendations:

- The preferred shorthand is ", which is not used in \LaTeX{} (quotes are entered as ` ` and ` `). Other good choices are characters which are not used in a certain context (eg, = in an ancient language). Note however =, <, >, : and the like can be dangerous, because they may be used as part of the syntax of some elements (numeric expressions, key/value pairs, etc.).
- Captions should not contain shorthands or encoding dependent commands (the latter is not always possible, but should be clearly documented). They should be defined using the LICR. You may also use the new tools for encoded strings, described below.
- Avoid adding things to \langle noextras \rangle except for umlauthigh and friends, \bbl@deactivate, \bbl@(non)frenchspacing, and language specific macros. Use always, if possible, \bbl@save and \bbl@savevariable (except if you still want to have access to the previous value). Do not reset a macro or a setting to a hardcoded value. Never. Instead save its value in \langle extras \rangle.
- Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the font encoding (low level) or the language (high level, which in turn may switch the font encoding). Usage of things like \langle latintext \rangle is deprecated.\footnote{22But not removed, for backward compatibility.}
- Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and it can lead to incompatibilities.

There are no special requirements for documenting your language files. Now they are not included in the base babel manual, so provide a standalone document suited for your needs, as well as other files you think can be useful. A PDF and a “readme” are strongly recommended.

3.1 Basic macros

In the core of the babel system, several macros are defined for use in language definition files. Their purpose is to make a new language known. The first two are related to hyphenation patterns.

\texttt{\addlanguage} The macro \addlanguage is a non-outer version of the macro \newlanguage, defined in plain.tex version 3.x. For older versions of plain.tex and lplain.tex a
substitutedefinitionisused.Here“language”isusedinthe\TeXsens eof set of hyphenation patterns.

\adddialect
The macro \adddialect can be used when two languages can (or must) use the same hyphenation patterns. This can also be useful for languages for which no patterns are preloaded in the format. In such cases the default behaviour of the babel system is to define this language as a ‘dialect’ of the language for which the patterns were loaded as \language0. Here “language” is used in the\TeXsense of set of hyphenation patterns.

\langle\lang\rangle hyphenmins
The macro \langle\lang\rangle hyphenmins is used to store the values of the \lefthyphenmin and \righthyphenmin. Redefine this macro to set your own values, with two numbers corresponding to these two parameters. For example:
\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras<\lang> has no effect.)

\providehyphenmins
The macro \providehyphenmins should be used in the language definition files to set \lefthyphenmin and \righthyphenmin. This macro will check whether these parameters were provided by the hyphenation file before it takes any action. If these values have been already set, this command is ignored (currently, default pattern files do not set them).

\captions<\lang>
The macro \captions<\lang> defines the macros that hold the texts to replace the original hard-wired texts.

\date<\lang>
The macro \date<\lang> defines \today.

\extras<\lang>
The macro \extras<\lang> contains all the extra definitions needed for a specific language. This macro, like the following, is a hook – you can add things to it, but it must not be used directly.

\noextras<\lang>
Because we want to let the user switch between languages, but we do not know what state \TeX might be in after the execution of \extras<\lang>, a macro that brings \TeX into a predefined state is needed. It will be no surprise that the name of this macro is \noextras<\lang>.

\bbl@declare@tribute
This is a command to be used in the language definition files for declaring a language attribute. It takes three arguments: the name of the language, the attribute to be defined, and the code to be executed when the attribute is to be used.

\main@language
To postpone the activation of the definitions needed for a language until the beginning of a document, all language definition files should use \main@language instead of \selectlanguage. This will just store the name of the language, and the proper language will be activated at the start of the document.

\ProvidesLanguage
The macro \ProvidesLanguage should be used to identify the language definition files. Its syntax is similar to the syntax of the \ProvidesPackage command.

\LdfInit
The macro \LdfInit performs a couple of standard checks that must be made at the beginning of a language definition file, such as checking the category code of the @-sign, preventing the \ldf file from being processed twice, etc.

\ldf@quit
The macro \ldf@quit does work needed if a .ldf file was processed earlier. This includes resetting the category code of the @-sign, preparing the language to be activated at \begin{document} time, and sending the input stream.

\ldf@finish
The macro \ldf@finish does work needed at the end of each .ldf file. This includes resetting the category code of the @-sign, loading a local configuration file, and preparing the language to be activated at \begin{document} time.

\loadlocalcfg
After processing a language definition file, \TeX can be instructed to load a local configuration file. This file can, for instance, be used to add strings to \captions<\lang> to support local document classes. The user will be informed that this configuration file has been loaded. This macro is called by \ldf@finish.

\substitutefontfamily
Deprecated.) This command takes three arguments, a font encoding and two font family names. It creates a font description file for the first font in the given
encoding. This .fd file will instruct \TeX to use a font from the second family when a font from the first family in the given encoding seems to be needed.

3.2 Skeleton

Here is the basic structure of an \ldf file, with a language, a dialect and an attribute. Strings are best defined using the method explained in in sec. 3.7 (babel 3.9 and later).

\ProvidesLanguage{<language>}
\LdfInit{<language>}{captions<language>}
\ifdef\undefined\l@<language>
\@nopatterns{<Language>}
\adddialect\l@<language>0
\fi
\adddialect\l@<dialect>\l@<language>
\bbl@declare@attribute{<language>}{<attrib>}{
\expandafter\addto\expandafter\extras<language>
\expandafter{\extras<attrib><language>}
\let\captions<language>\captions<attrib><language>}
\providehyphenmins{<language>}{\tw@\thr@@}
\StartBabelCommands*{<language>}{captions}
\SetString\chaptername{<chapter name>}
% More strings
\StartBabelCommands*{<language>}{date}
\SetString\monthiname{<name of first month>}
% More strings
\StartBabelCommands*{<dialect>}{captions}
\SetString\chaptername{<chapter name>}
% More strings
\StartBabelCommands*{<dialect>}{date}
\SetString\monthiname{<name of first month>}
% More strings
\EndBabelCommands
\addto\extras<language>{}
\addto\noextras<language>{}
\let\extras<dialect>\extras<language>
\let\noextras<dialect>\noextras<language>
\ldf@finish{<language>}

3.3 Support for active characters

In quite a number of language definition files, active characters are introduced. To facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files to
instruct \TeX to give a character the category code ‘active’. When a character has been made active it will remain that way until the end of the document. Its definition may vary.

\bbl@activate The command \bbl@activate is used to change the way an active character expands. \bbl@activate ‘switches on’ the active behaviour of the character. \bbl@deactivate lets the active character expand to its former (mostly) non-active self.

\declare@shorthand The macro \declare@shorthand is used to define the various shorthands. It takes three arguments: the name for the collection of shorthands this definition belongs to; the character (sequence) that makes up the shorthand, i.e. – or “a; and the code to be executed when the shorthand is encountered. (It does not raise an error if the shorthand character has not been “initiated”.)

\bbl@add@special \bbl@remove@special The \TeX book states: “Plain \TeX includes a macro called \dospecials that is essentially a set macro, representing the set of all characters that have a special category code.” [1, p. 380] It is used to set text ‘verbatim’. To make this work if more characters get a special category code, you have to add this character to the macro \dospecial. \TeX adds another macro called \@sanitize representing the same character set, but without the curly braces. The macros \bbl@add@special{char} and \bbl@remove@special{char} add and remove the character {char} to these two sets.

3.4 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a mechanism for saving (and restoring) the original definition of those macros is provided. We provide two macros for this23.

\babel@save To save the current meaning of any control sequence, the macro \babel@save is provided. It takes one argument, \langle csname \rangle, the control sequence for which the meaning has to be saved.

\babel@savevariable A second macro is provided to save the current value of a variable. In this context, anything that is allowed after the \the primitive is considered to be a variable. The macro takes one argument, \langle variable \rangle.

The effect of the preceding macros is to append a piece of code to the current definition of \originalTeX. When \originalTeX is expanded, this code restores the previous definition of the control sequence or the previous value of the variable.

3.5 Support for extending macros

\addto The macro \addto{⟨control sequence⟩}{⟨\TeX code⟩} can be used to extend the definition of a macro. The macro need not be defined (ie, it can be undefined or \relax). This macro can, for instance, be used in adding instructions to a macro like \extrasenglish.

Be careful when using this macro, because depending on the case the assignment could be either global (usually) or local (sometimes). That does not seem very consistent, but this behaviour is preserved for backward compatibility. If you are using etoolbox, by Philipp Lehman, consider using the tools provided by this package instead of \addto.

3.6 Macros common to a number of languages

\bbl@allowhyphens In several languages compound words are used. This means that when \TeX has to hyphenate such a compound word, it only does so at the ‘-‘ that is used in such

23This mechanism was introduced by Bernd Raichle.
words. To allow hyphenation in the rest of such a compound word, the macro \\
\allowhyphens can be used.

\allowhyphens Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is intended
mainly for characters provided as real glyphs by this encoding but constructed with
\accent in OT1.
Note the previous command (\bbl@allowhyphens) has different applications
(hyphens and discretionaries) than this one (composite chars). Note also prior to
version 3.7, \allowhyphens had the behaviour of \bbl@allowhyphens.
\setlowbox For some languages, quotes need to be lowered to the baseline. For this purpose
the macro \setlowbox is available. It takes one argument and puts that argument in an\hbox, at the baseline. The result is available in \box0 for further processing.
\save@sfq Sometimes it is necessary to preserve the \spacefactor. For this purpose the
macro \save@sfq is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.
\bbl@frenchspacing The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be used to
properly switch French spacing on and off.

3.7 Encoding-dependent strings

New 3.9a Babel 3.9 provides a way of defining strings in several encodings,
intended mainly for luatex and xetex. This is the only new feature requiring
changes in language files if you want to make use of it.
Furthermore, it must be activated explicitly, with the package option strings. If
there is no strings, these blocks are ignored, except \SetCases (and except if
forced as described below). In other words, the old way of defining/switching
strings still works and it's used by default.
It consist is a series of blocks started with \StartBabelCommands. The last block is
closed with \EndBabelCommands. Each block is a single group (ie, local declarations
apply until the next \StartBabelCommands or \EndBabelCommands). An ldf may
contain several series of this kind.
Thanks to this new feature, string values and string language switching are not
mixed any more. No need of \addto. If the language is french, just redefine
\frenchchaptername.

\StartBabelCommands {\langle language-list\rangle}{\langle category\rangle}{\langle selector\rangle}

The \langle language-list\rangle specifies which languages the block is intended for. A block is
taken into account only if the \CurrentOption is listed here. Alternatively, you can
define \BabelLanguages to a comma-separated list of languages to be defined (if
undefined, \StartBabelCommands sets it to \CurrentOption). You may write
\CurrentOption as the language, but this is discouraged – a explicit name (or
names) is much better and clearer.
A “selector” is a name to be used as value in package option strings, optionally
followed by extra info about the encodings to be used. The name unicode must be
used for xetex and luatex (the key strings has also other two special values:
generic and encoded).
If a string is set several times (because several blocks are read), the first one take
precedence (ie, it works much like \providecommand).
Encoding info is charset= followed by a charset, which if given sets how the strings
should be traslated to the internal representation used by the engine, typically
utf8, which is the only value supported currently (default is no translations). Note
charset is applied by luatex and xetex when reading the file, not when the macro or
string is used in the document.
A list of font encodings which the strings are expected to work with can be given after fontenc= (separated with spaces, if two or more) – recommended, but not mandatory, although blocks without this key are not taken into account if you have requested strings=encoded.

Blocks without a selector are read always if the key strings has been used. They provide fallback values, and therefore must be the last blocks; they should be provided always if possible and all strings should be defined somehow inside it; they can be the only blocks (mainly LGC scripts using the LICR). Blocks without a selector can be activated explicitly with strings=generic (no block is taken into account except those). With strings=encoded, strings in those blocks are set as default (internally, ?). With strings=encoded strings are protected, but they are correctly expanded in \MakeUppercase and the like. If there is no key strings, string definitions are ignored, but \SetCases are still honoured (in a encoded way). The \category is either captions, date or extras. You must stick to these three categories, even if no error is raised when using other name.\footnote{In future releases further categories may be added.} It may be empty, too, but in such a case using \SetString is an error (but not \SetCase).

\StartBabelCommands{language}{captions}
 [unicode, fontenc=TU EU1 EU2, charset=utf8]
\SetString{\chaptername}{utf8-string}
\EndBabelCommands

A real example is:

\StartBabelCommands{austrian}{date}
 [unicode, fontenc=TU EU1 EU2, charset=utf8]
 \SetString{\monthiname}{Jänner}
\EndBabelCommands

\StartBabelCommands{german,austrian}{date}
 [unicode, fontenc=TU EU1 EU2, charset=utf8]
 \SetString{\monthiiiname}{März}
\EndBabelCommands

\StartBabelCommands{austrian}{date}
 \SetString{\monthiname}{J\"{a}nner}
\EndBabelCommands

\StartBabelCommands{german}{date}
 \SetString{\monthiname}{Januar}
\EndBabelCommands

\StartBabelCommands{german,austrian}{date}
 \SetString{\monthiname}{Februar}
 \SetString{\monthiiiname}{M\"{a}rz}
 \SetString{\monthivname}{April}
 \SetString{\monthvname}{Mai}
 \SetString{\monthviname}{Juni}
 \SetString{\monthviiname}{Juli}
 \SetString{\monthviiiname}{August}
 \SetString{\monthixname}{September}
 \SetString{\monthxname}{Oktober}
 \SetString{\monthxiname}{November}
 \SetString{\monthxiiname}{Dezenber}
 \today{\number\day.~\csname month\romannumeral\month\endcsname\space
 \number\year}
When used in \df files, previous values of \langlecategory\rangle⟨language⟩ are overriden, which means the old way to define strings still works and used by default (to be precise, is first set to undefined and then strings are added). However, when used in the preamble or in a package, new settings are added to the previous ones, if the language exists (in the babel sense, ie, if \langledate\rangle⟨language⟩ exists).

*{\langlelanguage-list\rangle}{\langlecategory\rangle}[\langleselector\rangle]

The starred version just forces strings to take a value – if not set as package option, then the default for the engine is used. This is not done by default to prevent backward incompatibilities, but if you are creating a new language this version is better. It’s up to the maintainers of the current languages to decide if using it is appropriate.

\{⟨macro-name⟩\}{⟨string⟩}

Add ⟨macro-name⟩ to the current category, and defines globally ⟨lang-macro-name⟩ to ⟨code⟩ (after applying the transformation corresponding to the current charset or defined with the hook stringprocess). Use this command to define strings, without including any “logic” if possible, which should be a separated macro. See the example above for the date.

\{⟨macro-name⟩\}{⟨string-list⟩}

A convenient way to define several ordered names at once. For example, to define \abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}
\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

\SetCase

Sets globally code to be executed at \MakeUppercase and \MakeLowercase. The code would be typically things like \let\BB\bb and \uccode or \lccode (although for the reasons explained above, changes in lc/uc codes may not work). A ⟨map-list⟩ is a series of macros using the internal format of \@ucclist (eg, \bb\BB\cc\CC). The mandatory arguments take precedence over the optional one. This command, unlike \SetString, is executed always (even without strings), and it is intended for minor readjustments only. For example, as T1 is the default case mapping in \LaTeX, we could set for Turkish:

25This replaces in 3.9g a short-lived \UseStrings which has been removed because it did not work.
(Note the mapping for OT1 is not complete.)

\SetHyphenMap \{⟨to-lower-macs⟩\}

\section{Changes}

\subsection{Changes in \texttt{babel} version 3.9}

Most of changes in version 3.9 are related to bugs, either to fix them (there were lots), or to provide some alternatives. Even new features like \texttt{\textbackslash \texttt{babelhyphen are}}
intended to solve a certain problem (in this case, the lacking of a uniform syntax and behaviour for shorthands across languages). These changes are described in this manual in the corresponding place. A selective list follows:

- \select@language did not set \languagename. This meant the language in force when auxiliary files were loaded was the one used in, for example, shorthands – if the language was german, a \select@language{spanish} had no effect.

- \foreignlanguage and otherlanguage* messed up \extras<language>. Scripts, encodings and many other things were not switched correctly.

- The :ENC mechanism for hyphenation patterns used the encoding of the previous language, not that of the language being selected.

- ' (with activeacute) had the original value when writing to an auxiliary file, and things like an infinite loop could happen. It worked incorrectly with ^ (if activated) and also if deactivated.

- Active chars where not reset at the end of language options, and that lead to incompatibilities between languages.

- \textormath raised and error with a conditional.

- \aliasshorthand didn’t work (or only in a few and very specific cases).

- \l@english was defined incorrectly (using \let instead of \chardef).

- ldf files not bundled with babel were not recognized when called as global options.

4.2 Changes in babel version 3.7

In babel version 3.7 a number of bugs that were found in version 3.6 are fixed. Also a number of changes and additions have occurred:

- Shorthands are expandable again. The disadvantage is that one has to type ‘\textacut{a} when the acute accent is used as a shorthand character. The advantage is that a number of other problems (such as the breaking of ligatures, etc.) have vanished.

- Two new commands, \shorthandon and \shorthandoff have been introduced to enable to temporarily switch off one or more shorthands.

- Support for typesetting Greek has been enhanced. Code from the kgreek package (suggested by the author) was added and \greeknumeral has been added.

- Support for typesetting Basque is now available thanks to Juan Aguirregabiria.

- Support for typesetting Serbian with Latin script is now available thanks to Dejan Muhamedagić and Jankovic Slobodan.

- Support for typesetting Hebrew (and potential support for typesetting other right-to-left written languages) is now available thanks to Rama Porrat and Boris Lavva.

- Support for typesetting Bulgarian is now available thanks to Georgi Boshnakov.

- Support for typesetting Latin is now available, thanks to Claudio Beccari and Krzysztof Konrad Żelechowski.
• Support for typesetting North Sami is now available, thanks to Regnor Jernsletten.

• The options canadian, canadien and acadien have been added for Canadian English and French use.

• A language attribute has been added to the \mark... commands in order to make sure that a Greek header line comes out right on the last page before a language switch.

• Hyphenation pattern files are now read inside a group; therefore any changes a pattern file needs to make to lowercase codes, uppercase codes, and category codes are kept local to that group. If they are needed for the language, these changes will need to be repeated and stored in \extras...

• The concept of language attributes is introduced. It is intended to give the user some control over the features a language-definition file provides. Its first use is for the Greek language, where the user can choose the πολυτονικό (“polytonikó” or multi-accented) Greek way of typesetting texts. These attributes will possibly find wider use in future releases.

• The environment hyphenrules is introduced.

• The syntax of the file \language.dat has been extended to allow (optionally) specifying the font encoding to be used while processing the patterns file.

• The command \providehyphenmins should now be used in language definition files in order to be able to keep any settings provided by the pattern file.

4.3 Changes in babel version 3.6

In babel version 3.6 a number of bugs that were found in version 3.5 are fixed. Also a number of changes and additions have occurred:

• A new environment otherlanguage* is introduced. it only switches the ‘specials’, but leaves the ‘captions’ untouched.

• The shorthands are no longer fully expandable. Some problems could only be solved by peeking at the token following an active character. The advantage is that ‘{}a works as expected for languages that have the ‘ active.

• Support for typesetting french texts is much enhanced; the file \lang\ais.ldf is now replaced by \french.ldf which is maintained by Daniel Flipo.

• Support for typesetting the russian language is again available. The language definition file was originally developed by Olga Lapko from CyrTUG. The fonts needed to typeset the russian language are now part of the babel distribution. The support is not yet up to the level which is needed according to Olga, but this is a start.

• Support for typesetting greek texts is now also available. What is offered in this release is a first attempt; it will be enhanced later on by Yannis Haralambous.

• in babel 3.6j some hooks have been added for the development of support for Hebrew typesetting.

• Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in South Africa) has been added to \dutch.ldf.
• Support for typesetting Welsh texts is now available.

• A new command \aliasshorthand is introduced. It seems that in Poland various conventions are used to type the necessary Polish letters. It is now possible to use the character / as a shorthand character instead of the character ", by issuing the command \aliasshorthand{"/"}.

• The shorthand mechanism now deals correctly with characters that are already active.

• Shorthand characters are made active at \begin{document}, not earlier. This is to prevent problems with other packages.

• A \textit{preambleonly} command \substitutefontfamily has been added to create .fd files on the fly when the font families of the Latin text differ from the families used for the Cyrillic or Greek parts of the text.

• Three new commands\LdfInit, \ldf@quit and \ldf@finish are introduced that perform a number of standard tasks.

• In babel 3.6k the language Ukrainian has been added and the support for Russian typesetting has been adapted to the package 'cyrillic' to be released with the December 1998 release of \LaTeX2\ EPSILON.

4.4 Changes in babel version 3.5

In babel version 3.5 a lot of changes have been made when compared with the previous release. Here is a list of the most important ones:

• the selection of the language is delayed until \begin{document}, which means you must add appropriate \selectlanguage commands if you include \hyphenation lists in the preamble of your document.

• babel now has a language environment and a new command \foreignlanguage;

• the way active characters are dealt with is completely changed. They are called 'shorthands'; one can have three levels of shorthands: on the user level, the language level, and on 'system level'. A consequence of the new way of handling active characters is that they are now written to auxiliary files 'verbatim';

• A language change now also writes information in the .aux file, as the change might also affect typesetting the table of contents. The consequence is that an .aux file generated by a \LaTeX2\ EPSILON format with babel preloaded gives errors when read with a \LaTeX2\ EPSILON format without babel; but I think this probably doesn't occur;

• babel is now compatible with the inputenc and fontenc packages;

• the language definition files now have a new extension, \texttt{ldf};

• the syntax of the file language.dat is extended to be compatible with the french package by Bernard Gaulle [this package is now named frenchie];

• each language definition file looks for a configuration file which has the same name, but the extension .cfg. It can contain any valid \LaTeX2 code.
Part II
The code

babel is being developed incrementally, which means parts of the code are under development and therefore incomplete. Only documented features are considered complete. In other words, use babel only as documented (except, of course, if you want to explore and test them – you can post suggestions about multilingual issues to kadingira@tug.org on http://tug.org/mailman/listinfo/kadingira).

5 Identification and loading of required files

Code documentation is still under revision.

The babel package after unpacking it consists of the following files:

- **switch.def**: defines macros to set and switch languages.
- **babel.def**: defines the rest of macros. It has two parts: a generic one and a second one only for LaTeX.
- **babel.sty**: is the LaTeX package, which sets options and loads language styles.
- **plain.def**: defines some \LaTeX macros required by babel.def and provides a few tools for Plain.
- **hyphen.cfg**: is the file to be used when generating the formats to load hyphenation patterns. By default it also loads switch.def.

The babel installer extends docstrip with a few “pseudo-guards” to set “variables” used at installation time. They are used with `<@name@>` at the appropriated places in the source code and shown below with ⟨⟨name⟩⟩. That brings a little bit of literate programming.

1 ⟨⟨version=3.13⟩⟩
2 ⟨⟨date=2017/09/18⟩⟩

6 Tools

Do not use the following macros in ldf files. They may change in the future.

This applies mainly to those recently added for replacing, trimming and looping. The older ones, like \bbl@afterfi, will not change.

We define some basic macros which just make the code cleaner. \bbl@add is now used internally instead of \addto because of the unpredictable behaviour of the latter. Used in babel.def and in babel.sty, which means in \LaTeX is executed twice, but we need them when defining options and babel.def cannot be load until options have been defined. This does not hurt, but should be fixed somehow.

3 ⟨⟨Basic macros⟩⟩ ≡
4 \def\bbl@stripslash{\expandafter\@gobble\string}
5 \def\bbl@add#1#2{%
6 \bbl@ifunset{\bbl@stripslash#1}%
7 \def#1{#2}%
8 \expandafter\def\expandafter#1\expandafter{#1#2}%
9 \def\#1{2}%
10 \def\csarg#1#2{\expandafter\csname \bbl@#2\endcsname}
11 \def\loop#1#2#3{\bbl@loop#1{#3}{#2},\@nnil,}
12 \def\loopx#1#2{\expandafter\loop\expandafter#1\expandafter{#2}}
13 \def\loopfi#1#2{\expandafter\loop\expandafter#1\expandafter{#2}}
14 \def\#1{3},%
\bbl@for#1#2#3{\bbl@loopx#1{#2}{\ifx#1\@empty\else#3\fi}}

This internal macro adds its second argument to a comma separated list in its first argument. When the list is not defined yet (or empty), it will be initiated. It presumes expandable character strings.

\def\bbl@add@list#1#2{\edef#1{\bbl@ifunset{\bbl@stripslash#1}{\ifx#1\@empty\else#1,\fi}#2}}

\bbl@afterelse\bbl@afterfi

Because the code that is used in the handling of active characters may need to look ahead, we take extra care to 'throw' it over the \else and \fi parts of an \if-statement26. These macros will break if another \if...\fi statement appears in one of the arguments and it is not enclosed in braces.

\long\def\bbl@afterelse#1\else#2\fi{\fi#1}
\long\def\bbl@afterfi#1\fi{\fi#1}

The following piece of code is stolen (with some changes) from keyval, by David Carlisle. It defines two macros: \bbl@trim and \bbl@trim@def. The first one strips the leading and trailing spaces from the second argument and then applies the first argument (a macro, \toks@ and the like). The second one, as its name suggests, defines the first argument as the stripped second argument.

\def\bbl@tempa#1{\long\def\bbl@trim##1##2{\futurelet\bbl@trim@a\bbl@trim@c##2\@nil\@nil#1\@nil\relax{##1}}\long\def\bbl@trim@c{\ifx\bbl@trim@a\@sptoken\expandafter\bbl@trim@b\else\expandafter\bbl@trim@b\expandafter#1\fi}\long\def\bbl@trim@b#1##1\@nil\#2\relax#3{#3{#1}}\long\def\bbl@trim@def#1{\bbl@trim{\def#1}}}

To check if a macro is defined, we create a new macro, which does the same as \@ifundefined. However, in an \epsilon-tex engine, it is redefined more robust

\def\bbl@ifunset#1{\expandafter\ifx\csname#1\endcsname\relax\bbl@afterelse\expandafter\@firstoftwo\else\bbl@afterfi\expandafter\@secondoftwo}

26This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion Power Lemma” by Sonja Maus.
A tool from url, by Donald Arseneau, which tests if a string is empty or space.

```
\def\bbl@ifblank#1{\bbl@ifblank@i#1\@nil\@nil\@secondoftwo\@firstoftwo\@nil}
\long\def\bbl@ifblank@i#1#2\@nil#3#4#5\@nil{#4}
```

For each element in the comma separated <key>=<value> list, execute <code> with #1 and #2 as the key and the value of current item (trimmed). In addition, the item is passed verbatim as #3. With the <key> alone, it passes \@empty (ie, the macro thus named, not an empty argument, which is what you get with <key>= and no value).

```
\def\bbl@forkv#1#2{\def\bbl@kvcmd##1##2##3{#2} \bbl@kvnext#1,\@nil,}
\def\bbl@kvnext#1,{\ifx\@nil#1\relax\else \bbl@ifblank{#1}{}{\bbl@forkv@eq#1=\@empty=\@nil{#1}} \expandafter\bbl@kvnext \fi}
\def\bbl@forkv@eq#1=#2=#3\@nil#4{\bbl@trim@def\bbl@forkv@a{#1} \bbl@trim{\expandafter\bbl@kvcmd\expandafter{\bbl@forkv@a}}{#2}{#4}}
```

A for loop. Each item (trimmed), is #1. It cannot be nested (it’s doable, but we don’t need it).

```
\def\bbl@vforeach#1#2{\def\bbl@forcmd##1{#2} \bbl@fornext#1,\@nil,}
\def\bbl@fornext#1,{\ifx\@nil#1\relax\else \bbl@ifblank{#1}{}{\bbl@trim\bbl@forcmd{#1}} \expandafter\bbl@fornext \fi}
\def\bbl@foreach#1{\expandafter\bbl@vforeach\expandafter{#1}}
```

```
\def\bbl@replace#1#2#3{\toks@{} \def\bbl@replace@aux##1#2##2#2{\ifx\bbl@nil##2\toks@{\expandafter\bbl@expandafter\"\the\bbl@toks@\"\@#1\@#3}{\bbl@afterfi}} \else \toks@{\expandafter\bbl@expandafter\"\the\bbl@toks@\"\@#1\@#3}{\bbl@afterfi} \else\bbl@replace@aux##1#2#2\fi\bbl@afterfi\bbl@replace@aux##1#2\bbl@nil#2\edef#1{\the\bbl@toks@}}
```

Now, just syntactical sugar, but it makes partial expansion of some code a lot more simple and readable. Here " stands for \noexpand and \\ for \noexpand applied to a built macro name (the latter does not define the macro if undefined to \relax, because it is created locally). The result may be followed by extra arguments, if necessary.
Two more tools. \texttt{bb@samestring} first expand its arguments and then compare their expansion (sanitized, so that the catcodes do not matter). \texttt{bb@engine} takes the following values: 0 is \LaTeX, 1 is \texttt{lua}, and 2 is \texttt{xetex}. You may use the latter it in your language style if you want.

Some files identify themselves with a \LaTeX macro. The following code is placed before them to define (and then undefine) if not in \LaTeX.

The following code is used in \texttt{babel.sty} and \texttt{babel.def}, and loads (only once) the data in \texttt{language.dat}.

The following code is used in \texttt{babel.def} and \texttt{switch.def}.

The following code is used in \texttt{babel.def} and \texttt{switch.def}.
6.1 Multiple languages

\language Plain \TeX{} version 3.0 provides the primitive \language{} that is used to store the current language. When used with a pre-3.0 version this function has to be implemented by allocating a counter. The following block is used in switch.def and hyphen.cfg; the latter may seem redundant, but remember babel doesn’t require loading switch.def in the format.

\begin{verbatim}
139 \ifx\language\@undefined
140 \csname newcount\endcsname\language
141 \fi
142 \endverbatim

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an extra counter has to be allocated.

\addlanguage To add languages to \TeX{}’s memory plain \TeX{} version 3.0 supplies \newlanguage{}, in a pre-3.0 environment a similar macro has to be provided. For both cases a new macro is defined here, because the original \newlanguage{} was defined to be \outer{}. For a format based on plain version 2.x, the definition of \newlanguage{} can not be copied because \count 19 is used for other purposes in these formats. Therefore \addlanguage{} is defined using a definition based on the macros used to define \newlanguage{} in plain \TeX{} version 3.0.

For formats based on plain version 3.0 the definition of \newlanguage{} can be simply copied, removing \outer{}. Plain \TeX{} version 3.0 uses \count 19 for this purpose.

\begin{verbatim}
144 \ifx\newlanguage\@undefined
145 \csname newcount\endcsname\last@language
146 \def\addlanguage#1{%
147 \global\advance\last@language\@ne
148 \ifnum\last@language<\@cclvi
149 \errmessage{No room for a new \string\language!}%
150 \else
151 \wlog{\string#1 = \string\language\the\last@language}}
152 \fi
153 \global\chardef\last@language\@cclvi
154 \else
155 \countdef\last@language=19
156 \def\addlanguage{\alloc@9\language\chardef@cclvi}
157 \fi
158 \endverbatim

Identify each file that is produced from this source file.

\ProvidesFile{babel.drv}[]{\date} {\version}
\ProvidesFile{user.drv}[]{\date} {\version}
\ProvidesFile{driver.drv}[]{\date} {\version}

Now we make sure all required files are loaded. When the command \AtBeginDocument{} doesn’t exist we assume that we are dealing with a plain-based format or \TeX{} 2.09. In that case the file plain.def is needed (which also defines \AtBeginDocument, and therefore it is not loaded twice). We need the first part when the format is created, and \orig@dump is used as a flag. Otherwise, we need to use the second part, so \orig@dump is not defined (plain.def undefines it).
Check if the current version of switch.def has been previously loaded (mainly, hyphen.cfg). If not, load it now. We cannot load babel.def here because we first need to declare and process the package options.

7 The Package File (\LaTeX, babel.sty)

In order to make use of the features of \LaTeX\, the babel system contains a package file, babel.sty. This file is loaded by the \usepackage command and defines all the language options whose name is different from that of the .ldf file (like variant spellings). It also takes care of a number of compatibility issues with other packages and defines a few aditional package options. Apart from all the language options below we also have a few options that influence the behaviour of language definition files. Many of the following options don’t do anything themselves, they are just defined in order to make it possible for babel and language definition files to check if one of them was specified by the user.

7.1 base

The first option to be processed is base, which set the hyphenation patterns then resets ver@babel.sty so that \LaTeX forgets about the first loading. After switch.def has been loaded (above) and \AfterBabelLanguage defined, exits.

\NeedsTeXFormat{LaTeX2e}[2005/12/01]
\ProvidesPackage{babel}[]{\langle\langle date\rangle\rangle \langle\langle version\rangle\rangle}
The Babel package
\ifpackagewith{babel}{debug}{\let\bbl@debug\@firstofone}{\let\bbl@debug\@gobble}
\input switch.def\relax
\ifx\bbl@languages\@undefined\else
\begingroup
\catcode`\^^I=12
\ifpackagewith{babel}{showlanguages}{\begingroup
\def\bbl@elt#1#2#3#4{\wlog{#2\^^I#1\^^I#3\^^I#4}}
\wlog{<*languages>}
\bbl@languages
\wlog{</languages>}{}}
\endgroup{}}
\endgroup
\def\bbl@elt#1#2#3#4{\ifnum#2=\z@\gdef\bbl@nulllanguage{#1}\def\bbl@elt##1##2##3##4{}\fi}
\bbl@languages
\if\bbl@languages@undefined\else
\begingroup
\catcode`\^^I=12
\ifpackagewith{babel}{showlanguages}{\begingroup
\def\bbl@elt#1#2#3#4{\wlog{#2\^^I#1\^^I#3\^^I#4}}
\wlog{<*languages>}\}
\bbl@languages
\wlog{</languages>}\}
\endgroup{}}
\endgroup
\def\bbl@elt#1#2#3#4{\ifnum#2=\z@\gdef\bbl@nulllanguage{#1}\def\bbl@elt##1##2##3##4{}\fi}
\bbl@languages
\fi
Now the base option. With it we can define (and load, with \texttt{luatex}) hyphenation patterns, even if we are not interested in the rest of \texttt{babel}. Useful for old versions of \texttt{polyglossia}, too.

\begin{verbatim}
195\@ifpackagewith{babel}{base}{%
196 \ifx\directlua\@undefined
197 \DeclareOption*{\bbl@patterns{\CurrentOption}}%
198 \else
199 \DeclareOption*{\bbl@patterns@lua{\CurrentOption}}%
200 \fi
201 \DeclareOption{base}{}%
202 \DeclareOption{showlanguages}{}%
203 \ProcessOptions
204 \global\expandafter\let\csname opt@babel.sty\endcsname\relax
205 \global\expandafter\let\csname ver@babel.sty\endcsname\relax
206 \global\let\@ifl@ter@@\@ifl@ter
207 \def\@ifl@ter#1#2#3#4#5{\global\let\@ifl@ter\@ifl@ter@@}%
208 \endinput}{}%
\end{verbatim}

\subsection*{7.2 \texttt{key=value} options and other general option}

The following macros extract language modifiers, and only real package options are kept in the option list. Modifiers are saved and assigned to \texttt{\BabelModifiers} at \texttt{\bbl@load@language}; when no modifiers have been given, the former is \texttt{\relax}. How modifiers are handled are left to language styles; they can use \texttt{\in@}, loop them with \texttt{\@for} or load keyval, for example.

\begin{verbatim}
209\bbl@csarg\let{tempa\expandafter}\csname opt@babel.sty\endcsname
210\def\bbl@tempb#1.#2{%
211 #1\ifx\@empty#2\else,\bbl@afterfi\bbl@tempb#2\fi}%
212\def\bbl@tempd#1.#2\@nnil{%
213 \ifx\@empty#2%
214 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
215 \else
216 \in@={#1}\ifin@
217 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1.#2}%
218 \else
219 \edef\bbl@tempc{\ifx\bbl@tempc\@empty\else\bbl@tempc,\fi#1}%
220 \bbl@csarg\edef{mod@#1}{\bbl@tempb#2}%
221 \fi
222 \fi}
223\let\bbl@tempc\@empty
224\bbl@foreach\bbl@tempa{\bbl@tempd#1.\@empty\@nnil}
225\expandafter\let\csname opt@babel.sty\endcsname\bbl@tempc
\end{verbatim}

The next option tells \texttt{babel} to leave shorthand characters active at the end of processing the package. This is \textit{not} the default as it can cause problems with other packages, but for those who want to use the shorthand characters in the preamble of their documents this can help.

\begin{verbatim}
226\DeclareOption{KeepShorthandsActive}{}%
227\DeclareOption{activeacute}{}%
228\DeclareOption{activegrave}{}%
229\DeclareOption{debug}{}%
230\DeclareOption{noconfigs}{}%
231\DeclareOption{showlanguages}{}%
232\DeclareOption{silent}{}%
233\DeclareOption{shorthands=off}{\bbl@tempa shorthands=\bbl@tempa}
234\langle\langle \text{More package options} \rangle\rangle
\end{verbatim}
Handling of package options is done in three passes. (I JBL am not very happy with the idea, anyway.) The first one processes options which has been declared above or follow the syntax \texttt{<key>=<value>}, the second one loads the requested languages, except the main one if set with the key main, and the third one loads the latter. First, we “flag” valid keys with a nil value.

\begin{verbatim}
\let\bbl@opt@shorthands@nil
\let\bbl@opt@config@nil
\let\bbl@opt@main@nil
\let\bbl@opt@headfoot@nil
\end{verbatim}

The following tool is defined temporarily to store the values of options.

\begin{verbatim}
\def\bbl@tempa#1=#2\bbl@tempa{\
\bbl@csarg\ifx\{opt@#1}\@nnil\bbl@csarg\edef\{opt@#1\}{#2}\
\else\bbl@error{\
Bad option `#1=#2'. Either you have misspelled the key or there is a previous setting of `#1'}{\
Valid keys are `shorthands', `config', `strings', `main', `headfoot', `safe', `math'}\fi}
\end{verbatim}

Now the option list is processed, taking into account only currently declared options (including those declared with a =), and <key>=<value> options (the former take precedence). Unrecognized options are saved in \texttt{\bbl@language@opts}, because they are language options.

\begin{verbatim}
\let\bbl@language@opts\@empty
\DeclareOption*{\
\@expandtwoargs\in@\{\string=\}\{CurrentOption\%\
\ifin@\expandafter\bbl@tempa\CurrentOption\bbl@tempa\else\bbl@add@list\bbl@language@opts\{\CurrentOption\%\
\fi}
\end{verbatim}

Now we finish the first pass (and start over).

7.3 Conditional loading of shorthands

If there is no \texttt{shorthands=<chars>}, the original babel macros are left untouched, but if there is, these macros are wrapped (in babel.def) to define only those given. A bit of optimization: if there is no \texttt{shorthands=}, then \texttt{\bbl@ifshorthands} is always true, and it is always false if shorthands is empty. Also, some code makes sense only with \texttt{shorthands=....}

\begin{verbatim}
\def\bbl@sh@string#1{\
\ifx#1\@empty\else\ifx#1t\string~%\else\ifx#1c\string,%\else\string#1%\fi\fi\fi\expandafter\bbl@sh@string\fi}
\ifx\bbl@opt@shorthands@nil
\def\bbl@ifshorthand#1#2#3{#2}\else\ifx\bbl@opt@shorthands\@empty
\def\bbl@ifshorthand#1#2#3{#3}\else\fallat@endof@line
\fi\fi\fi\fi\expandafter\bbl@@sh@string \fi}
\end{verbatim}
The following macro tests if a shorthand is one of the allowed ones.
\begin{verbatim}
\def\bbl@ifshorthand#1{%
 \@expandtwoargs\in@{\string#1}{\bbl@opt@shorthands}%
 \ifin@
 \expandafter\@firstoftwo
 \else
 \expandafter\@secondoftwo
 \fi}
\end{verbatim}

We make sure all chars in the string are ‘other’, with the help of an auxiliary macro defined above (which also zaps spaces).
\begin{verbatim}
\edef\bbl@opt@shorthands{%
 \expandafter\bbl@sh@string\bbl@opt@shorthands\@empty}%
\end{verbatim}

The following is ignored with shorthands=off, since it is intended to take some aditional actions for certain chars.
\begin{verbatim}
\bbl@ifshorthand{'}%{
 {\PassOptionsToPackage{activeacute}{babel}}{}}
\bbl@ifshorthand{`}%{
 {\PassOptionsToPackage{activegrave}{babel}}{}}
\fi\fi
\end{verbatim}

With headfoot=lang we can set the language used in heads/foots. For example, in babel/3796 just adds headfoot=english. It misuses \@resetactivechars but seems to work.
\begin{verbatim}
\ifx\bbl@opt@headfoot\@nnil\else
 \g@addto@macro\@resetactivechars{%
 \set@typeset@protect
 \select@language@x{\bbl@opt@headfoot}%
 \let\protect\noexpand
 }
\fi
\end{verbatim}

For the option safe we use a different approach – \bbl@opt@safe says which macros are redefined (B for bibs and R for refs). By default, both are set.
\begin{verbatim}
\ifx\bbl@opt@safe\@undefined
 \def\bbl@opt@safe{BR}
\fi
\end{verbatim}

\section{Language options}

Languages are loaded when processing the corresponding option except if a main language has been set. In such a case, it is not loaded until all options has been processed. The following macro inputs the ldf file and does some additional checks (\input works, too, but possible errors are not caught).
\begin{verbatim}
\let\bbl@afterlang\relax
\let\BabelModifiers\relax
\let\bbl@loaded\@empty
\def\bbl@load@language#1{%
 \InputIfFileExists{#1.ldf}{
 \edef\bbl@loaded{\CurrentOption
 \ifx\bbl@loaded\@empty\else,\bbl@loaded\fi}%
 \expandafter\let\expandafter\bbl@afterlang
 }{\expandafter\let\expandafter\bbl@afterlang
 }
\end{verbatim}
Now, we set language options whose names are different from .ldf files.

Another way to extend the list of 'known' options for babel was to create the file bblopts.cfg in which one can add option declarations. However, this mechanism is deprecated – if you want an alternative name for a language, just create a new .ldf file loading the actual one. You can also set the name of the file with the package option config=<name>, which will load <name>.cfg instead.

Recognizing global options in packages not having a closed set of them is not trivial, as for them to be processed they must be defined explicitly. So, package options not yet taken into account and stored in bbl@language@opts are assumed to be languages (note this list also contains the language given with main). If not declared above, the name of the option and the file are the same.
Now, we make sure an option is explicitly declared for any language set as global option, by checking if an ldf exists. The previous step was, in fact, somewhat redundant, but that way we minimize accessing the file system just to see if the option could be a language.

If a main language has been set, store it for the third pass.

And we are done, because all options for this pass has been declared. Those already processed in the first pass are just ignored.

The options have to be processed in the order in which the user specified them (except, of course, global options, which \LaTeX processes before):

This finished the second pass. Now the third one begins, which loads the main language set with the key main. A warning is raised if the main language is not the same as the last named one, or if the value of the key main is not a language. Then execute directly the option (because it could be used only in main). After loading all languages, we deactivate \AfterBabelLanguage.

Last declared language option is `\bbltmpc',\%
but the last processed one was `\bbltmpb'.\%
The main language cannot be set as both a global\%
and a package option. Use `main=\bbltmpc' as\%
option. Reported)\%
\fi
\else

48
In order to catch the case where the user forgot to specify a language we check whether \bbl@main@language, has become defined. If not, no language has been loaded and an error message is displayed.

\input{switch.def}

8 The kernel of Babel (babel.def, common)

The kernel of the babel system is stored in either hyphen.cfg or switch.def and babel.def. The file babel.def contains most of the code, while switch.def defines the language switching commands; both can be read at run time. The file hyphen.cfg is a file that can be loaded into the format, which is necessary when you want to be able to switch hyphenation patterns (by default, it also inputs switch.def, for “historical reasons”, but it is not necessary). When babel.def is loaded it checks if the current version of switch.def is in the format; if not it is loaded. A further file, babel.sty, contains \LaTeX-specific stuff.

Because plain \TeX users might want to use some of the features of the babel system too, care has to be taken that plain \TeX can process the files. For this reason the current format will have to be checked in a number of places. Some of the code below is common to plain \TeX and \LaTeX, some of it is for the \LaTeX case only. Plain formats based on etex (etex, xetex, luatex) don't load hyphen.cfg but etex.src, which follows a different naming convention, so we need to define the babel names. It presumes language.def exists and it is the same file used when formats were created.

8.1 Tools

\ProvidesFile{babel.def}[]{\langle\langle date\rangle\rangle \langle\langle version\rangle\rangle Babel common definitions}
\addto For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once they
have been defined the macro \addto is introduced. It takes two arguments, a
\textit{control sequence} and \TeX-code to be added to the \textit{control sequence}.
If the \textit{control sequence} has not been defined before it is defined now. The control
sequence could also expand to \relax, in which case a circular definition results.
The net result is a stack overflow. Otherwise the replacement text for the \textit{control sequence}
is expanded and stored in a token register, together with the \TeX-code to be
added. Finally the \textit{control sequence} is redefined, using the contents of the
token register.

\bbl@withactive To redefine a command, we save the old meaning of the macro. Then we redefine it
to call the original macro with the ‘sanitized’ argument. The reason why we do it
this way is that we don’t want to redefine the \LaTeX macros completely in case their
definitions change (they have changed in the past).
Because we need to redefine a number of commands we define the command \bbl@redefine which takes care of this. It creates a new control sequence, \org@...

\def\bbl@redefine#1{%
 \edef\bbl@tempa{\bbl@stripslash#1}%
 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
 \expandafter\def\csname \bbl@tempa\endcsname}

This command should only be used in the preamble of the document.

\@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such as \ifthenelse.

\def\bbl@redefine@long#1{%
 \edef\bbl@tempa{\bbl@stripslash#1}%
 \expandafter\let\csname org@\bbl@tempa\endcsname#1%
 \expandafter\long\expandafter\def\csname \bbl@tempa\endcsname}

\@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly more intelligent macro. A robust command \texttt{foo} is defined to expand to \protect\texttt{foo}. So it is necessary to check whether \texttt{foo} exists. The result is that the command that is being redefined is always robust afterwards. Therefore all we need to do now is define \texttt{foo}.

\def\bbl@redefinerobust#1{%
 \edef\bbl@tempa{\bbl@stripslash#1}%
 \bbl@ifunset{\bbl@tempa\space}%
 {\expandafter\let\csname org@\bbl@tempa\endcsname#1%
 \bbl@exp{\def\#1{\\protect<\bbl@tempa\space}}}%
 {\bbl@exp{\let<org@\bbl@tempa<\bbl@tempa\space}}}%
 \@namedef{\bbl@tempa\space}}

This command should only be used in the preamble of the document.

\@onlypreamble\bbl@redefinerobust

8.2 Hooks

Note they are loaded in babel.def. switch.def only provides a “hook” for hooks (with a default value which is a no-op, below). Admittedly, the current implementation is somewhat simplistic and does very little to catch errors, but it is intended for developers, after all. \bbl@usehooks is the commands used by babel to execute hooks defined for an event.

\def\AddBabelHook#1#2{%
 \bbl@ifunset{\bbl@hk@#1}{\EnableBabelHook{#1}}{}%
 \def\bbl@tempa##1,#2=##2,##3\@empty{\def\bbl@tempb{##2}}%
 \expandafter\bbl@tempa\bbl@evargs,#2=,\@empty
 \bbl@ifunset{\bbl@ev@#1@#2}%
 {\bbl@csarg\bbl@add{ev@#2}{\bbl@elt{#1}}}%
 \bbl@csarg{ev@#1@#2}\[
 \bbl@tempb\]}

\def\EnableBabelHook#1\{\bbl@csarg\let{hk@#1}\@firstofone}

\def\DisableBabelHook#1\{\bbl@csarg\let{hk@#1}\@gobble\}

\def\bbl@usehooks#1#2{%
 \bbl@elt#1%
To ensure forward compatibility, arguments in hooks are set implicitly. So, if a further argument is added in the future, there is no need to change the existing code. Note events intended for hyphen.cfg are also loaded (just in case you need them for some reason).

\begin{Verbatim}
def\bbl@evargs{,% don't delete the comma
everylanguage=1,loadkernel=1,loadpatterns=1,loadexceptions=1,%
adddialect=2,patterns=2,defaultcommands=0,encodedcommands=2,write=0,%
beforeextras=0,afterextras=0,stopcommands=0,stringprocess=0,%
yphenation=2,initiateactive=3,afterreset=0,foreign=0,foreign*=0}
\end{Verbatim}

The user command just parses the optional argument and creates a new macro named \bbl@e@(language). We register a hook at the afterextras event which just executes this macro in a “complete” selection (which, if undefined, is \relax and does nothing). This part is somewhat involved because we have to make sure things are expanded the correct number of times.

The macro \bbl@e@(language) contains \bbl@ensure{(include)}{(exclude)}{(fontenc)}, which in in turn loops over the macros names in \bbl@captionslist, excluding (with the help of \in@) those in the exclude list. If the fontenc is given (and not \relax), the \fontencoding is also added. Then we loop over the include list, but if the macro already contains \foreignlanguage, nothing is done. Note this macro (1) is not restricted to the preamble, and (2) changes are local.

\begin{Verbatim}
\newcommand\bbl@ensure[2][]{% 1: include 2: exclude 3: fontenc
\def\bbl@tempb##1{% elt for (excluding) \bbl@captionslist list
\ifx##1\@empty\else\in@{##1}{#2}\ifin@\else\bbl@ifunset{bbl@ensure@\languagename}\fi\fi
\fi}
\bbl@foreach\bbl@tempa{\bbl@tempb##1\@@}
\def\bbl@tempc{\bbl@ensure}
\expandafter\bbl@add\expandafter\bbl@tempc\expandafter{\expandafter{\bbl@ens@include}}
\expandafter\bbl@add\expandafter\bbl@tempc\expandafter{\expandafter{\bbl@ens@exclude}}
\toks@\expandafter{\bbl@tempc}
\bbl@exp{%
\endgroup
\def\bbl@e@#2{\the\toks@{\bbl@ens@fontenc}}}
\end{Verbatim}
8.3 Setting up language files

\LdfInit The second version of \LdfInit macro takes two arguments. The first argument is the name of the language that will be defined in the language definition file; the second argument is either a control sequence or a string from which a control sequence should be constructed. The existence of the control sequence indicates that the file has been processed before.

At the start of processing a language definition file we always check the category code of the at-sign. We make sure that it is a ‘letter’ during the processing of the file. We also save its name as the last called option, even if not loaded. Another character that needs to have the correct category code during processing of language definition files is the equals sign, ‘\=', because it is sometimes used in constructions with the \let primitive. Therefore we store its current catcode and restore it later on.

Now we check whether we should perhaps stop the processing of this file. To do this we first need to check whether the second argument that is passed to \LdfInit is a control sequence. We do that by looking at the first token after passing #2 through string. When it is equal to \@backslashchar we are dealing with a control sequence which we can compare with \@undefined. If so, we call \ldf@quit to set the main language, restore the category code of the @-sign and call \endinput.

When #2 was not a control sequence we construct one and compare it with \relax. Finally we check \originalTeX.

557 \def\bbl@ldfinit{% 558 \let\bbl@screset@empty 559 \let\BabelStrings\bbl@opt@string 560 \let\BabelOptions@empty 561 \let\BabelLanguages\relax
\@onlypreamble\LdfInit
\@onlypreamble\ldf@quit
\@onlypreamble\ldf@finish

\LdfInit\def\ldfInit#1#2{%
 \chardef\atcatcode=\catcode`@\relax
 \chardef\eqcatcode=\catcode`=\relax
 \expandafter\if\expandafter\@backslashchar \expandafter\@car\string#2\@nil
 \expandafter\if\expandafter#2\@undefined\else
 \ldf@quit{#1}\fi
 \else
 \expandafter\ifx\csname#2\endcsname\relax\else
 \ldf@quit{#1}\fi
 \fi
 \fi
}

This macro interrupts the processing of a language definition file.

\ldf@quit\def\ldf@quit#1{%
 \endinput}

\ldf@finish\def\ldf@finish#1{%
 \loadlocalcfg{#1}
 \bbl@afterldf{#1}
 \expandafter\main@language\expandafter{#1}\let\atcatcode\relax
 \let\eqcatcode\relax}

This macro takes one argument. It is the name of the language that was defined in the language definition file.
We load the local configuration file if one is present, we set the main language (taking into account that the argument might be a control sequence that needs to be expanded) and reset the category code of the @-sign.

After the preamble of the document the commands \LdfInit, \ldf@quit and \ldf@finish are no longer needed. Therefore they are turned into warning messages in \LaTeXX.

\main@language\def\main@language#1{%
 \bbl@main@language#1}

This command should be used in the various language definition files. It stores its argument in \bbl@main@language; to be used to switch to the correct language at the beginning of the document.
We also have to make sure that some code gets executed at the beginning of the document.

\AtBeginDocument{\selectlanguage{\bbl@main@language}}

A bit of optimization. Select in heads/feet the language only if necessary.

8.4 Shorthands

The macro \bbl@add@special is used to add a new character (or single character control sequence) to the macro \dospecials (and \@sanitize if \TeX{} is used). It is used only at one place, namely when \initiate@active@char is called (which is ignored if the char has been made active before). Because \@sanitize can be undefined, we put the definition inside a conditional.

Items are added to the lists without checking its existence or the original catcode. It does not hurt, but should be fixed. It’s already done with \nfss@catcodes, added in 3.10.

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It removes a character from the set macros \dospecials and \@sanitize, but it is not used at all in the babel core.
A language definition file can call this macro to make a character active. This macro takes one argument, the character that is to be made active. When the character was already active this macro does nothing. Otherwise, this macro defines the control sequence \normal@char{(char)} to expand to the character in its ‘normal state’ and it defines the active character to expand to \normal@char{(char)} by default ((char) being the character to be made active). Later its definition can be changed to expand to \active@char{(char)} by calling \bbl@activate{(char)}.

For example, to make the double quote character active one could have \initiate@active@char{"} in a language definition file. This defines " as \active@prefix "\active@char" (where the first " is the character with its original catcode, when the shorthand is created, and \active@char" is a single token). In protected contexts, it expands to \protect " or \noexpand " (ie, with the original "); otherwise \active@char" is executed. This macro in turn expands to \normal@char" in “safe” contexts (eg, \label), but \user@active" in normal “unsafe” ones. The latter search a definition in the user, language and system levels, in this order; but if none is found, \normal@char" is used. However, a deactivated shorthand (with \bbl@deactivate is defined as \active@prefix "\normal@char". The following macro is used to define shorthands in the three levels. It takes 4 arguments: the (string’ed) character, <level>@group, <level>@active and <next-level>@active (except in system).

```latex
\def\bbl@active@def#1#2#3#4{%
\@namedef{#3#1}{%
  \expandafter\ifx\csname#2@sh@#1@\endcsname\relax
  \bbl@afterelse\bbl@sh@select#2#1{#3@arg#1}{#4#1}%
  \else
  \bbl@afterfi\csname#2@sh@#1@\endcsname
\fi}%

When there is also no current-level shorthand with an argument we will check whether there is a next-level defined shorthand for this active character.

```latex
\long\@namedef{#3@arg#1}{#1}{%
\expandafter\ifx\csname#2@sh@#1@\string#1@\endcsname\relax
 \bbl@afterelse\csname#4@#1\endcsname#1%
 \else
 \bbl@afterfi\csname#2@sh@#1@\string#1@\endcsname
\fi}%

\initiate@active@char calls \initiate@active@char with 3 arguments. All of them are the same character with different catcodes: active, other (\string’ed) and the original one. This trick simplifies the code a lot.

```latex
\def\initiate@active@char#1{% 
  \bbl@ifunset{active@char\string#1}{%
    \bbl@withactive
    {\expandafter\@initiate@active@char\expandafter}#1\string#1#1%
  }{}
}

The very first thing to do is saving the original catcode and the original definition, even if not active, which is possible (undefined characters require a special treatment to avoid making them \relax).

```latex
\def@initiate@active@char#1#2#3{%
 \bbl@csargedef{oricat@#2}{\catcode'\string#2=\the\catcode'\string#2\relax}%
 \if#2\undefined
 \bbl@csargedef{oridef@#2}{\let\noexpand#2\noexpand\undefined}%
 \else
 \bbl@csargedef{oridef@#2}{\let#2\undefined}%
 \fi
}
```
If the character is already active we provide the default expansion under this shorthand mechanism. Otherwise we write a message in the transcript file, and define \normal@char\langle\texttt{char}\rangle to expand to the character in its default state. If the character is mathematically active when \texttt{babel} is loaded (for example ') the normal expansion is somewhat different to avoid an infinite loop (but it does not prevent the loop if the mathcode is set to "8000 a posteriori).

To prevent problems with the loading of other packages after \texttt{babel} we reset the catcode of the character to the original one at the end of the package and of each language file (except with \texttt{KeepShorthandsActive}). It is re-activate again at \texttt{\begin{document}}. We also need to make sure that the shorthands are active during the processing of the \texttt{.aux} file. Otherwise some citations may give unexpected results in the printout when a shorthand was used in the optional argument of \texttt{\bibitem} for example. Then we make it active (not strictly necessary, but done for backward compatibility).

Now we have set \texttt{\normal@char\langle\texttt{char}\rangle}, we must define \texttt{\active@char\langle\texttt{char}\rangle}, to be executed when the character is activated. We define the first level expansion of \texttt{\active@char\langle\texttt{char}\rangle} to check the status of the \texttt{@safe@actives} flag. If it is set to true we expand to the ‘normal’ version of this character; otherwise we call \texttt{\user@active\langle\texttt{char}\rangle} to start the search of a definition in the user, language and system levels (or eventually \texttt{\normal@char\langle\texttt{char}\rangle}).
We now define the default values which the shorthand is set to when activated or deactivated. It is set to the deactivated form (globally), so that the character expands to

\active@prefix \normal@char \char

(where \active@char \char is one control sequence!).

The next level of the code checks whether a user has defined a shorthand for himself with this character. First we check for a single character shorthand. If that doesn’t exist we check for a shorthand with an argument.

In order to do the right thing when a shorthand with an argument is used by itself at the end of the line we provide a definition for the case of an empty argument. For that case we let the shorthand character expand to its non-active self. Also, When a shorthand combination such as ' ends up in a heading \TeX would see \protect \protect. To prevent this from happening a couple of shorthand needs to be defined at user level.

Finally, a couple of special cases are taken care of. (1) If we are making the right quote (’ active we need to change \prime as well. Also, make sure that a single ‘ in math mode ‘does the right thing’. (2) If we are using the caret (^) as a shorthand character special care should be taken to make sure math still works. Therefore an extra level of expansion is introduced with a check for math mode on the upper level.

The following package options control the behaviour of shorthands in math mode.

\DeclareOption{math=active}{} \\
\DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}} \\
\DeclareOption{math=normal}{\def\bbl@mathnormal{\noexpand\textormath}}
Initiating a shorthand makes active the char. That is not strictly necessary but it is still done for backward compatibility. So we need to restore the original catcode at the end of package and the end of the \ldf.

\@ifpackagewith{babel}{KeepShorthandsActive}\%
\{\let\bbl@restoreactive\@gobble\%
\{\def\bbl@restoreactive#1{%
\\bbl@exp{\\\Backslash\Backslash\AfterBabel\Language\\CurrentOption
\{\catcode`#1=\the\catcode`#1\relax\%
\\AtEndOfPackage
\{\catcode`#1=\the\catcode`#1\relax\}}%
\AtEndOfPackage{\let\bbl@restoreactive\@gobble}}%
\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed. Note that this macro needs to be expandable as do all the shorthand macros in order for them to work in expansion-only environments such as the argument of \hyphenation.
This macro expects the name of a group of shorthands in its first argument and a shorthand character in its second argument. It will expand to either \bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.
\def\bbl@sh@select#1#2{%
\expandafter\ifx\csname#1@sh@#2@sel\endcsname\relax
\bbl@afterelse\bbl@scndcs
\else
\bbl@afterfi\csname#1@sh@#2@sel\endcsname
\fi}
\active@prefix The command \active@prefix which is used in the expansion of active characters has a function similar to \fontchar in that it \protects the active character whenever \protect is not \@typeset@protect.
\def\active@prefix#1{%
\ifx\protect\@typeset@protect
\else
When \protect is set to \@unexpandable@protect we make sure that the active character is als not expanded by inserting \noexpand in front of it. The \@gobble is needed to remove a token such as \activechar: (when the double colon was the active character to be dealt with).
\ifx\protect\@unexpandable@protect
\noexpand#1%
\else
\protect#1%
\fi
\expandafter\@gobble
\fi}
\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an active character on the fly. For this purpose the switch @safe@actives is available. The setting of this switch should be checked in the first level expansion of \active@char\langle char\rangle.
\newif\if@safe@actives
\@safe@activesfalse
\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this must be undone in the headers to prevent unexpected typeset results. For this situation we define a command to make them “unsafe” again.
\def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}
Both macros take one argument, like \initiate@active@char. The macro is used to change the definition of an active character to expand to \active@char(char) in the case of \bbl@activate, or \normal@char(char) in the case of \bbl@deactivate.

\bbl@firstcs\ bbl@scndcs
These macros have two arguments. They use one of their arguments to build a control sequence from.

\declare@shorthand
The command \declare@shorthand is used to declare a shorthand on a certain level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;
2. the character (sequence) that makes up the shorthand, i.e. ~ or “a;
3. the code to be executed when the shorthand is encountered.

\textormath
Some of the shorthands that will be declared by the language definition files have to be usable in both text and mathmode. To achieve this the helper macro \textormath is provided.
The current concept of ‘shorthands’ supports three levels or groups of shorthands. For each level the name of the level or group is stored in a macro. The default is to have a user group; use language group ‘english’ and have a system group called ‘system’.

\def\user@group{user}\def\language@group{english}\def\system@group{system}

\useshorthands This is the user level command to tell \LaTeX{} that user level shorthands will be used in the document. It takes one argument, the character that starts a shorthand. First note that this is user level, and then initialize and activate the character for use as a shorthand character (ie, it’s active in the preamble). Languages can deactivate shorthands, so a starred version is also provided which activates them always after the language has been switched.

\def\useshorthands{%\@ifstar\bbl@usesh@s{bl@usesh@x{}}}\def\bbl@usesh@s#1{%\bbl@usesh@x{\AddBabelHook{babel-sh-\string#1}{afterextras}{\bbl@activate{#1}}}{#1}}\def\bbl@usesh@x#1#2{%\@ifundefined{user@language@group}{\initiate@active@char[#2]{#1}{#1}}{\bbl@activate[#2]{#1}}{\bbl@error{Cannot declare a shorthand turned off (\string#2)}{Sorry, but you cannot use shorthands which have been\% turned off in the package options}}

\defineshorthand Currently we only support two groups of user level shorthands, named internally user and user@<lang> (language-dependent user shorthands). By default, only the first one is taken into account, but if the former is also used (in the optional argument of \defineshorthand) a new level is inserted for it (user@generic, done by \bbl@set@user@generic); we make also sure {} and \protect are taken into account in this new top level.

\def\user@language@group{user@language@group}\def\bbl@set@user@generic#1#2{%\@ifundefined{user@generic@active#1}{\bbl@active@def#1\user@language@group{user@active}{user@generic@active}\bbl@active@def#1\user@group{user@generic@active}{language@active}\expandafter\edef\csname#2@sh@#1@@\endcsname{\expandafter
oexpand\csname normal@char#1\endcsname}\expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{\expandafter\noexpand\csname user@active#1\endcsname user@active#1\endcsname}}{\@empty}}\newcommand\defineshorthand[3][user]{%\edef\bbl@tempa{\zap@space#1 \@empty}\bbl@for\bbl@tempb{\bbl@tempa}{\if\expandafter\@car\bbl@tempb\@nil\edef\bbl@tempb{user@language@group\user@active}{user@generic@active}{user@generic@active}\bbl@active@def#1\user@language@group{user@active}{user@generic@active}{language@active}\expandafter\edef\csname#2@sh@#1@@\endcsname{\expandafter\noexpand\csname normal@char#1\endcsname}\expandafter\edef\csname#2@sh@#1@\string\protect@\endcsname{\expandafter\noexpand\csname user@active#1\endcsname user@active#1\endcsname}}\fi\declare@shorthand{\bbl@tempb}{#2}{#3}}
\languageshorthands  A user level command to change the language from which shorthands are used. Unfortunately, babel currently does not keep track of defined groups, and therefore there is no way to catch a possible change in casing.

\aliasshorthand  First the new shorthand needs to be initialized,

\@notshorthand  Then, we define the new shorthand in terms of the original one, but note with \aliasshorthand{"}{/} is \active@prefix \active@char/, so we still need to let the latest to \active@char".

\shorthandon  The first level definition of these macros just passes the argument on to \bbl@switch@sh, adding \@nil at the end to denote the end of the list of characters.

\shorthandoff  The macro \bbl@switch@sh takes the list of characters apart one by one and subsequently switches the category code of the shorthand character according to the first argument of \bbl@switch@sh. But before any of this switching takes place we make sure that the character we are dealing with is known as a shorthand character. If it is, a macro such as \active@char" should exist. Switching off and on is easy – we just set the category code to ‘other’ (12) and \active. With the starred version, the original catcode and the original definition, saved in @initiate@active@char, are restored.
\bbl@ifunset{bbl@active\string#2}\
\{\bbl@iferror
\{\ifcase#1\catcode\string#212\relax
\or\catcode\string#2\active
\or\csname bbl@oricat\string#2\endcsname
\csname bbl@oridef\string#2\endcsname\fi\}
\bbl@afterfi\bbl@switch@sh#1\fi
\bbl@afterfi\bbl@switch@sh\#1\fi

Notethevalueisthatattheexpansiontime, eg, inthepreamble shorthands are
usually deactivated.
\def\babelshorthand{\active@prefix\babelshorthand\bbl@putsh}
\def\bbl@putsh#1{\bbl@ifunset{bbl@active\string#1}{\bbl@putsh@i#1\@empty\@nnil}{\csname bbl@active\string#1\endcsname}}
\def\bbl@putsh@i#1#2\@nnil{\csname\languagename @sh@\string#1@\ifx\@empty#2\else\string#2@\fi\endcsname}
\ifx\bbl@opt@shorthands\@nnil\else
\let\bbl@s@initiate@active@char\initiate@active@char
\def\initiate@active@char#1{\bbl@ifshorthand{#1}{\bbl@s@initiate@active@char{#1}}{}}
\let\bbl@s@switch@sh\bbl@switch@sh
\def\bbl@switch@sh#1#2{\ifx#2\@nnil\else\bbl@afterfi\bbl@s@switch@sh#1\fi}
\let\bbl@s@activate\bbl@activate
\def\bbl@activate#1{\bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}
\let\bbl@s@deactivate\bbl@deactivate
\def\bbl@deactivate#1{\bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}
\fi
\bbl@prim@s
\bbl@pr@m@s
One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted to
look also for an active right quote; the hat could be active, too.
\def\bbl@prim@s{\prime\futurelet\@let@token\bbl@pr@m@s}
\def\bbl@if@primes#1#2{\ifx#1\@let@token\expandafter\@firstoftwo
\else\ifx#2\@let@token\bbl@afterelse\expandafter\@firstoftwo
\else\bbl@afterfi\expandafter\@secondoftwo\fi\fi
\bbl@afterfi\bbl@activate
\def\bbl@activate#1{\bbl@ifshorthand{#1}{\bbl@s@activate{#1}}{}}
\bbl@deactivate#1{\bbl@ifshorthand{#1}{\bbl@s@deactivate{#1}}{}}
\bbl@deactivate#1{\bbl@s@deactivate{#1}}
\fi
Usually the ~ is active and expands to \penalty\@M \␣. When it is written to the .aux file it is written expanded. To prevent that and to be able to use the character ~ as a start character for a shorthand, it is redefined here as a one character shorthand on system level. The system declaration is in most cases redundant (when ~ is still a non-break space), and in some cases is inconvenient (if ~ has been redefined); however, for backward compatibility it is maintained (some existing documents may rely on the babel value).

\initiate@active@char{-} \declare@shorthand{system}{~}{\leavevmode\nobreak\ } \bbl@activate{~}

The position of the double quote character is different for the OT1 and T1 encodings. It will later be selected using the \f@encoding macro. Therefore we define two macros here to store the position of the character in these encodings.

\expandafter\def\csname OT1dqpos\endcsname{127} \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain \TeX) we define it here to expand to OT1

\ifx\f@encoding\undefined \def\f@encoding{OT1} \fi

8.5 Language attributes

Language attributes provide a means to give the user control over which features of the language definition files he wants to enable.

The macro \languageattribute checks whether its arguments are valid and then activates the selected language attribute. First check whether the language is known, and then process each attribute in the list.

\newcommand\languageattribute[2]{% \def\bbl@tempc{#1} % \bbl@fixname\bbl@tempc % \bbl@iflanguage\bbl@tempc{% \bbl@vforeach[#2]{% We want to make sure that each attribute is selected only once; therefore we store the already selected attributes in \bbl@known@attrs. When that control sequence is not yet defined this attribute is certainly not selected before.

\ifx\bbl@known@attrs\undefined \in@false \else \in@true \fi

Now we need to see if the attribute occurs in the list of already selected attributes.

\@expandtwoargs\in@{,\bbl@tempc-##1,}{,\bbl@known@attrs,}%
When the attribute was in the list we issue a warning; this might not be the user's intention.

```
\ifin@
\bbl@warning{%
 You have more than once selected the attribute '##1'\% for language #1}%
\else
```

When we end up here the attribute is not selected before. So, we add it to the list of selected attributes and execute the associated \TeX-code.

```
\bbl@exp{%
 \bbl@add@list\bbl@known@attrs{\bbl@tempc-##1}\%
 \edef\bbl@tempa{\bbl@tempc-##1}
 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%
 \csname\bbl@tempc[attr@##1}\endcsname%
}\fi}
```

This command should only be used in the preamble of a document.

```
\@onlypreamble\languageattribute
```

The error text to be issued when an unknown attribute is selected.

```
\newcommand*{\@attrerr}[2]{%
 \bbl@error
 \{The attribute #2 is unknown for language #1.%
 \Your command will be ignored, type <return> to proceed}%
}\bbl@declare@ttribute
```

This command adds the new language/attribute combination to the list of known attributes.

Then it defines a control sequence to be executed when the attribute is used in a document. The result of this should be that the macro \extras... for the current language is extended, otherwise the attribute will not work as its code is removed from memory at \begin{document}.

```
\def\bbl@declare@ttribute#1#2#3{%
 \@expandtwoargs\in@{,##2,}{,\BabelModifiers,}\
 \ifin@
 \AfterBabelLanguage{#1}{\languageattribute{#1}{##2}}%
 \else
 \bbl@add@list\bbl@attributes{#1-##2}%
 \expandafter\def\csname#1@attr@##2\endcsname{#3}}
}\bbl@ifattributeset
```

This internal macro has 4 arguments. It can be used to interpret \TeX-code based on whether a certain attribute was set. This command should appear inside the argument to \AtBeginDocument because the attributes are set in the document preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being checked, and the third and fourth arguments are the true and false clauses.

```
\def\bbl@ifattributeset#1#2#3#4{%
 First we need to find out if any attributes were set; if not we’re done.
 \ifx\bbl@known@attrs\undefined
 \in=false
 \else
 \bbl@add@list\bbl@attributes{#1-#2}{}
 \expandafter\bbl@known@attrs{#1}{#2}{#3}{#4}
 \fi
```

The we need to check the list of known attributes.

```
\@expandtwoargs\in@{,#1-#2}{,\bbl@known@attrs,}\
\fi
```
When we're this far \ifin@ has a value indicating if the attribute in question was 
set or not. Just to be safe the code to be executed is 'thrown over the \fi'.

\bbl@ifknown@trib An internal macro to check whether a given language/attribute is known. The macro 
takes 4 arguments, the language/attribute, the attribute list, the \TeX-code to be 
exected when the attribute is known and the \TeX-code to be executed otherwise.

\def\bbl@ifknown@trib#1#2{% 
 We first assume the attribute is unknown.
\let\bbl@tempa@secondoftwo
Then we loop over the list of known attributes, trying to find a match.
\bbl@loopx\bbl@tempb{#2}{% 
\expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%
When a match is found the definition of \bbl@tempa is changed.
\let\bbl@tempa@firstoftwo
\else
\fi}%
Finally we execute \bbl@tempa.
\bbl@tempa
}

\bbl@clear@ttribs This macro removes all the attribute code from \TeX's memory at 
\begin{document} time (if any is present).
\def\bbl@clear@ttribs{% 
\ifx\bbl@attributes\@undefinedelse
\bbl@loopx\bbl@tempa\bbl@trib\bbl@tempa.%
\expandafter\bbl@clear@ttrib\bbl@trib\bbl@tempa.
}\% 
\let\bbl@attributes\@undefined
\fi}
\def\bbl@clear@ttrib#1-#2.{% 
\expandafter\let\csname#1@attr@#2\endcsname\@undefined}
\AtBeginDocument{\bbl@clear@ttribs}

8.6 Support for saving macro definitions

To save the meaning of control sequences using \bbl@save, we use temporary 
control sequences. To save hash table entries for these control sequences, we don't 
use the name of the control sequence to be saved to construct the temporary name. 
Instead we simply use the value of a counter, which is reset to zero each time we 
begin to save new values. This works well because we release the saved meanings 
before we begin to save a new set of control sequence meanings (see \selectlanguage and \originalTEx). Note undefined macros are not undefined any 
more when saved – they are \relax'ed.

\bbl@savecnt The initialization of a new save cycle: reset the counter to zero.
\bbl@beginsave 1001 \def\bbl@beginsave{\bbl@savecnt\z@}
Before it's forgotten, allocate the counter and initialize all.

\newcount\babel@savecnt
\babel@beginsave

\textbf{\texttt{\textbackslash babel@save\langle csname\rangle}} saves the current meaning of the control sequence \texttt{\langle csname\rangle} to \texttt{\textbackslash original\TeX}\textsuperscript{27}. To do this, we let the current meaning to a temporary control sequence, the restore commands are appended to \texttt{\textbackslash original\TeX} and the counter is incremented.

\def\babel@save#1{\expandafter\let\csname babel@\number\babel@savecnt\endcsname#1\relax\toks@\expandafter{\texttt{\textbackslash original\TeX\textbackslash let\texttt{\langle\texttt{\textbackslash \textbackslash tacos@\texttt{\textbackslash \textbackslash \texttt{\textbackslash endcsname}\#1}}}}}\bbl@exp{\def\\texttt{\textbackslash original\TeX}{\the\toks@\langle\texttt{\textbackslash \textbackslash tacos@\texttt{\textbackslash \textbackslash \texttt{\textbackslash bbl@number\textbackslash \textbackslash bbl@savecnt}}}\relax}}\advance\babel@savecnt\@ne

\textbf{\texttt{\textbackslash babel@savevariable\langle variable\rangle}} saves the value of the variable. \texttt{\langle variable\rangle} can be anything allowed after the \texttt{\textbackslash \textbackslash the} primitive.

\def\babel@savevariable#1{\toks@\expandafter{\texttt{\textbackslash original\TeX\textbackslash let\texttt{\langle\texttt{\textbackslash \textbackslash tacos@\texttt{\textbackslash \textbackslash \texttt{\textbackslash #1}}}}}}\bbl@exp{\def\\texttt{\textbackslash original\TeX}{\the\toks@\the#1\relax}}}

\textbf{\texttt{\textbackslash bbl@frenchspacing}} Some languages need to have \texttt{\textbackslash frenchspacing} in effect. Others don’t want that. \texttt{\textbackslash bbl@nonfrenchspacing} switches it on when it isn’t already in effect and \texttt{\textbackslash bbl@nonfrenchspacing} switches it off if necessary.

\def\bbl@frenchspacing{%\ifnum\the\sfcode`\relax\@m\let\bbl@nonfrenchspacing\relax\else\frenchspacing\let\bbl@nonfrenchspacing\nonfrenchspacing\fi}
\let\bbl@nonfrenchspacing\nonfrenchspacing

\section{Short tags}

\textbf{\texttt{\textbackslash babeltags}} This macro is straightforward. After zapping spaces, we loop over the list and define the macros \texttt{\textbackslash text\langle tag\rangle} and \texttt{\langle tag\rangle}. Definitions are first expanded so that they don’t contain \texttt{\textbackslash csname} but the actual macro.

\def\babeltags#1{%\edef\bbl@tempa{\zap@space#1 \@empty}\edef\bbl@tempb##1=##2\@@{%\edef\bbl@tempc{%\noexpand\newcommand\expandafter
\noexpand\csname##1\endcsname{\noexpand\protect\expandafter
\noexpand\csname otherlanguage*\endcsname{##2}}\noexpand\newcommand\expandafter
\noexpand\csname text##1\endcsname{\noexpand\foreignlanguage{##2}}\noexpand\bbl@tempc}\bbl@for\bbl@tempa\bbl@tempa{%\expandafter\bbl@tempb\bbl@tempa\@empty}}}\textsuperscript{27}\texttt{\textbackslash original\TeX} has to be expandable, i.e. you shouldn’t let it to \texttt{\textbackslash relax}.\textsuperscript{27}

67
8.8 Hyphens

\babelhyphenation

This macro saves hyphenation exceptions. Two macros are used to store them: \bbl@hyphenation@ for the global ones and \bbl@hyphenation<lang> for language ones. See \bbl@patterns above for further details. We make sure there is a space between words when multiple commands are used.

\AtEndOfPackage{%)
\newcommand\babelhyphenation[2][\@empty]{%
  \ifx\bbl@hyphenation@\relax
    \let\bbl@hyphenation@\@empty
  \fi
  \ifx\bbl@hyphlist\@empty\else
    \bbl@warning{%
      You must not intermingle \string\selectlanguage\space and\%
      \string\babelhyphenation\space or some exceptions will not\%
      be taken into account. Reported}%
  \fi
  \ifx\@empty#1%
    \protected@edef\bbl@hyphenation@{\bbl@hyphenation@\space#2}%
  \else
    \bbl@vforeach{#1}{%
      \def\bbl@tempa{##1}%
      \bbl@fixname\bbl@tempa
      \bbl@iflanguage\bbl@tempa{%
        \bbl@csarg\protected@edef{hyphenation@\bbl@tempa}{%
          \bbl@ifunset{bbl@hyphenation@\bbl@tempa}{}{\csname bbl@hyphenation@\bbl@tempa\endcsname\space}%
          #2}}}%
  \fi}%
}

\bbl@allowhyphens

This macro makes hyphenation possible. Basically its definition is nothing more than \nobreak \hspace\penalty0 pt plus 0pt28.

\protected@edef\bbl@hyphenation{\bbl@hyphenation@\space\@empty}

\babelhyphen

Macros to insert common hyphens. Note the space before @ in \babelhyphen. Instead of protecting it with \DeclareRobustCommand, which could insert a \relax, we use the same procedure as shorthands, with \active@prefix.

\ndef\bbl@allowhyphens{\ifvmode\else\nobreak\hspace\z@skip\fi}
\def\bbl@t@one{T1}
\def\allowhyphens{\ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}

\def\babelnullhyphen{\char\hyphenchar\font}
\def\babelhyphen{\active@prefix\babelhyphen@\bbl@hyphen}
\def\bbl@hyphen{%
  \@ifstar{\bbl@hyphen@i \@}{\bbl@hyphen@i\@empty}
\def\bbl@hyphen@i[#1#2]{%
  \ifx\@empty\@empty\else
    \ifx\bbl@hyphen@1@\@empty\else
      \{\csname bbl@hyphenation@\bbl@hyphen@1#2\endcsname\space}\#2}\else
      \{\csname bbl@hyphenation@\bbl@hyphen@1#2\empty\endcsname\#2}\fi
      \{\csname bbl@hyphenation@\bbl@hyphen@2#2\endcsname\space\#2}\fi
      \{\csname bbl@hyphenation@\bbl@hyphen@2#2\empty\endcsname\#2}\fi

The following two commands are used to wrap the “hyphen” and set the behaviour of the rest of the word – the version with a single @ is used when further hyphenation is allowed, while that with @@ if no more hyphen are allowed. In both cases, if the hyphen is preceded by a positive space, breaking after the hyphen is disallowed.

\footnote{\TeX{} begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak at this glue node.}
There should not be a discretionaty after a hyphen at the beginning of a word, so it is prevented if preceded by a skip. Unfortunately, this does handle cases like “(-suffix)”. \nobreak is always preceded by \leavevmode, in case the shorthand starts a paragraph.

The following macro inserts the hyphen char.

Finally, we define the hyphen “types”. Their names will not change, so you may use them in \Idf’s. After a space, the \nobreak in \bbl@hy@nobreak is redundant.

For some languages the macro \bbl@disc is used to ease the insertion of discretionaries for letters that behave ‘abnormally’ at a breakpoint.

8.9 Multiencoding strings

The aim following commands is to provide a common interface for strings in several encodings. They also contains several hooks which can be used by luatex and xetex. The code is organized here with pseudo-guards, so we start with the basic commands.

Tools  But first, a couple of tools. The first one makes global a local variable. This is not the best solution, but it works.
The second one. We need to patch \@uclist, but it is done once and only if \SetCase is used or if strings are encoded. The code is far from satisfactory for several reasons, including the fact \@uclist is not a list any more. Therefore a package option is added to ignore it. Instead of gobbling the macro getting the next two elements (usually \reserved@a), we pass it as argument to \bbl@uclc. The parser is restarted inside \langle (lang)@bbl@uclc because we do not know how many expansions are necessary (depends on whether strings are encoded). The last part is tricky – when uppercasing, we have:

\begin{verbatim}
% \let\bbl@tolower\@empty\bbl@toupper\@empty
%
\@ifpackagewith{babel}{nocase}\
{\let\bbl@patchuclc\relax}\
{\def\bbl@patchuclc{\
  \global\let\bbl@patchuclc\relax\
  \g@addto@macro\@uclclist{\reserved@b{\reserved@b\bbl@uclc}}\
  \gdef\bbl@uclc##1{\
    \let\bbl@encoded\bbl@encoded@uclc\
    \bbl@ifunset{\languagename @bbl@uclc}{##1}\
    {\let\bbl@tempa##1\relax % Used by LANG@bbl@uclc\
      \csname\languagename @bbl@lc\endcsname}\
    {\bbl@tolower\@empty}{\bbl@toupper\@empty}}}\
\gdef\bbl@tolower{\csname\languagename @bbl@lc\endcsname}\
\gdef\bbl@toupper{\csname\languagename @bbl@uc\endcsname}}}
\end{verbatim}

and starts over (and similarly when lowercasing).

The following package options control the behaviour of \SetString.

\begin{verbatim}
\let\bbl@opt@strings\@nnil % accept strings=value
\DeclareOption{strings}{\def\bbl@opt@strings{\BabelStringsDefault}}
\DeclareOption{strings=encoded}{\let\bbl@opt@strings\relax}\def\BabelStringsDefault{generic}
\end{verbatim}

Main command This is the main command. With the first use it is redefined to omit the basic setup in subsequent blocks. We make sure strings contain actual letters in the range 128-255, not active characters.
Parse the encoding info to get the label, input, and font parts.
Select the behaviour of \SetString. There are two main cases, depending on if there is an optional argument: without it and strings=encoded, strings are defined always; otherwise, they are set only if they are still undefined (ie, fallback values).
With labelled blocks and strings=encoded, define the strings, but with another value, define strings only if the current label or font encoding is the value of strings; otherwise (ie, no strings or a block whose label is not in strings=) do nothing.

We presume the current block is not loaded, and therefore set (above) a couple of default values to gobble the arguments. Then, these macros are redefined if necessary according to several parameters.
There are two versions of \bbl@scswitch. The first version is used when ldfs are read, and it makes sure \langle group \rangle \langle language \rangle is reset, but only once (\bbl@screset is used to keep track of this). The second version is used in the preamble and packages loaded after babel and does nothing. The macro \bbl@forlang loops \bbl@L but its body is executed only if the value is in \BabelLanguages (inside babel) or \date \langle language \rangle is defined (after babel has been loaded). There are also two version of \bbl@forlang. The first one skips the current iteration if the language is not in \BabelLanguages (used in ldfs), and the second one skips undefined languages (after babel has been loaded).
Now we define commands to be used inside \StartBabelCommands.

**Strings** The following macro is the actual definition of \SetString when it is "active"

First save the "switcher". Create it if undefined. Strings are defined only if undefined (i.e., like \providescommand). With the event stringprocess you can preprocess the string by manipulating the value of \BabelString. If there are several hooks assigned to this event, preprocessing is done in the same order as defined. Finally, the string is set.

Now, some additional stuff to be used when encoded strings are used. Captions then include \bb@encoded for string to be expanded in case transformations. It is \relax by default, but in \MakeUppercase and \MakeLowercase its value is a modified expandable \@changed@cmd.
Define \SetStringLoop, which is actually set inside \StartBabelCommands. The current definition is somewhat complicated because we need a count, but \count@ is not under our control (remember \SetString may call hooks). Instead of defining a dedicated count, we just “pre-expand” its value.

```
\def\SetStringLoop##1##2{%
 \def\bbl@templ####1{\expandafter\csname##1\endcsname}%%
 \count@\z@
 \bbl@loop\bbl@tempa{##2}{% empty items and spaces are ok
 \advance\count@\@ne
 \toks@\expandafter{\bbl@tempa}%
 \bbl@exp{%
 \\SetString\bbl@templ{\romannumeral\count@}{\the\toks@}%
 \count@\the\count@\relax}}}%
```

**Delaying code**  
Now the definition of \AfterBabelCommands when it is activated.

```
\def\bbl@aftercmds#1{%
 \toks@\expandafter{\bbl@scafter#1}%
 \def\bbl@scafter{\the\toks@}}
```

**Case mapping**  
The command \SetCase provides a way to change the behaviour of \MakeUppercase and \MakeLowercase. \bbl@tempa is set by the patched \@uclclist to the parsing command.

```
\newcommand\SetCase[3][]{%
 \bbl@patchuclc
 \bbl@forlang\bbl@tempa{%
 \expandafter\bbl@encstring
 \csname\bbl@tempa @bbl@uc\endcsname{##2}
 \expandafter\bbl@encstring
 \csname\bbl@tempa @bbl@lc\endcsname{##3}}}%
```

Macros to deal with case mapping for hyphenation. To decide if the document is monolingual or multilingual, we make a rough guess – just see if there is a comma in the languages list, built in the first pass of the package options.

```
\newcommand\SetHyphenMap[1][]{%
 \bbl@forlang\bbl@tempa{%
 \expandafter\bbl@stringdef
 \csname\bbl@tempa @bbl@hyphenmap\endcsname{##1}}}%
```

There are 3 helper macros which do most of the work for you.
The following package options control the behaviour of hyphenation mapping.

\begin{itemize}
\item \DeclareOption{hyphenmap=off}{\chardef\bbl@opt@hyphenmap@z@}
\item \DeclareOption{hyphenmap=first}{\chardef\bbl@opt@hyphenmap@one}
\item \DeclareOption{hyphenmap=select}{\chardef\bbl@opt@hyphenmap@tw@}
\item \DeclareOption{hyphenmap=other}{\chardef\bbl@opt@hyphenmap@thr@}
\item \DeclareOption{hyphenmap=other*}{\chardef\bbl@opt@hyphenmap@\d@}
\end{itemize}

Initial setup to provide a default behaviour if hyphenmap is not set.

\begin{verbatim}
\AtEndOfPackage{%\if\bbl@opt@hyphenmap@undefined
\else\bbl@language@opts\fi}
\end{verbatim}

\section{Macros common to a number of languages}

\set@low@box The following macro is used to lower quotes to the same level as the comma. It prepares its argument in box register 0.

\begin{verbatim}
\def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}\
dimen\z@\ht\z@\advance\dimen\z@ -\ht\tw@
\setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}
\end{verbatim}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

\begin{verbatim}
\def\save@sf@q#1{\leavevmode\begingroup\edef\@SF{\spacefactor\the\spacefactor}#1\@SF\endgroup}
\end{verbatim}

\section{Making glyphs available}

This section makes a number of glyphs available that either do not exist in the OT1 encoding and have to be ‘faked’, or that are not accessible through T1enc.def.

\subsection{Quotation marks}

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a separate character, accessible via \quotedblbase. In the OT1 encoding it is not
available, therefore we make it available by lowering the normal open quote character to the baseline.

\provideTextCommand{\quotedblbase}{OT1}{% 
  \save@sf@q{\set@low@box{\textquotedblright/}% 
  \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

\providetextcommanddefault{\quotedblbase}{% 
  \usetextsymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

\providetextcommand{\quotesinglbase}{OT1}{% 
  \save@sf@q{\set@low@box{\textquoteright/}% 
  \box\z@\kern-.04em\bbl@allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still be typeset.

\providetextcommanddefault{\quotesinglbase}{% 
  \usetextsymbol{OT1}{\quotesinglbase}}

\guillemotleft The guillemet characters are not available in OT1 encoding. They are faked.

\providetextcommand{\guillemotleft}{OT1}{% 
  \ifmmode \ll \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle\ll$}\bbl@allowhyphens}\fi}

\providetextcommand{\guillemotright}{OT1}{% 
  \ifmmode \gg \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle\gg$}\bbl@allowhyphens}\fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\providetextcommanddefault{\guillemotleft}{% 
  \usetextsymbol{OT1}{\guillemotleft}}

\providetextcommanddefault{\guillemotright}{% 
  \usetextsymbol{OT1}{\guillemotright}}

\guilsinglleft The single guillemets are not available in OT1 encoding. They are faked.

\providetextcommand{\guilsinglleft}{OT1}{% 
  \ifmmode &\textless \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle\textless$}\bbl@allowhyphens}\fi}

\providetextcommand{\guilsinglright}{OT1}{% 
  \ifmmode \textgreater \else \save@sf@q{\nobreak \raise.2ex\hbox{$\scriptscriptstyle\textgreater$}\bbl@allowhyphens}\fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.
Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\providecommanddefault{\guilsingleleft}{\usetextsymbol{OT1}{\guilsingleleft}}
\providecommanddefault{\guilsinglright}{\usetextsymbol{OT1}{\guilsingleleft}}

8.11.2 Letters

The Dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not in the OT1 encoded fonts. Therefore we fake it for the OT1 encoding.

\DeclareTextCommand{\ij}{OT1}{{i\kern-0.02em\bbl@allowhyphens j}}
\DeclareTextCommand{\IJ}{OT1}{{I\kern-0.02em\bbl@allowhyphens J}}
\DeclareTextCommand{\ij}{T1}{\char188}
\DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\providecommanddefault{\ij}{\usetextsymbol{OT1}{\ij}}
\providecommanddefault{\IJ}{\usetextsymbol{OT1}{\IJ}}

The Croatian language needs the letters \dj and \DJ; they are available in the T1 encoding, but not in the OT1 encoding by default.

Some code to construct these glyphs for the OT1 encoding was made available to me by Stipcevic Mario, (stipcevic@olimp.irb.hr).

\def\crrtic@{\hrule height0.1ex width0.3em}
\def\crttic@{\hrule height0.1ex width0.33em}
\def\ddj@{{\setbox0\hbox{d}\dimen@=\ht0}\advance\dimen@1ex\dimen@.45\dimen@\dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@\advance\dimen@ii.5ex\leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
\def\DDJ@{{\setbox0\hbox{D}\dimen@=.55\ht0}\advance\dimen@1.5ex\dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@\advance\dimen@ii-.15\fontdimen7\font\leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
\DeclareTextCommand{\dj}{OT1}{\ddj@ d}
\DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can still be typeset.

\providecommanddefault{\dj}{\usetextsymbol{OT1}{\dj}}
\providecommanddefault{\DJ}{\usetextsymbol{OT1}{\DJ}}
For the T1 encoding \SS is defined and selects a specific glyph from the font, but for other encodings it is not available. Therefore we make it available here.

\DeclareTextCommand{\SS}{OT1}{SS}
\ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

8.11.3 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make them usable both outside and inside math mode.

\glq The 'german' single quotes.
\ProvideTextCommand{\glq}{OT1}{%
\textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
\ProvideTextCommand{\glq}{T1}{%
\textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
\ProvideTextCommandDefault{\glq}{\UseTextSymbol{OT1}\glq}

The definition of \grq depends on the font encoding. With T1 encoding no extra kerning is needed.

\ProvideTextCommand{\grq}{T1}{%
\textormath{\textquoteleft}{\mbox{\textquoteleft}}%
\kern.07em\relax}
\ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq The 'german' double quotes.
\ProvideTextCommand{\glqq}{OT1}{%
\textormath{\quotedblbase}{\mbox{\quotedblbase}}}
\ProvideTextCommand{\glqq}{T1}{%
\textormath{\quotedblbase}{\mbox{\quotedblbase}}}
\ProvideTextCommandDefault{\glqq}{\UseTextSymbol{OT1}\glqq}

The definition of \grqq depends on the font encoding. With T1 encoding no extra kerning is needed.

\ProvideTextCommand{\grqq}{T1}{%
\textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%
\kern.07em\relax}
\ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq The 'french' single guillemets.
\ProvideTextCommand{\flq}{OT1}{%
\textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
\ProvideTextCommand{\flq}{T1}{%
\textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
\ProvideTextCommandDefault{\flq}{\UseTextSymbol{OT1}\flq}

\frq The 'french' double guillemets.
\ProvideTextCommand{\frq}{OT1}{%
\textormath{\guilsingleright}{\mbox{\guilsingleright}}}
\ProvideTextCommand{\frq}{T1}{%
\textormath{\guilsingleright}{\mbox{\guilsingleright}}}
\ProvideTextCommandDefault{\frq}{\UseTextSymbol{OT1}\frq}
The 'french' double guillemets.

\flqq \frqq

8.11.4 Umlauts and tremas

The command \" needs to have a different effect for different languages. For German for instance, the 'umlaut' should be positioned lower than the default position for placing it over the letters a, o, u, A, O and U. When placed over an e, i, E or I it can retain its normal position. For Dutch the same glyph is always placed in the lower position.

\umlauthigh To be able to provide both positions of \" we provide two commands to switch the positioning, the default will be \umlauthigh (the normal positioning).

\umlautlow

\lower@umlaut The command \lower@umlaut is used to position the \" closer to the letter. We want the umlaut character lowered, nearer to the letter. To do this we need an extra \texttt{dimen} register.

The following code fools \TeX{}'s make\_accent procedure about the current x-height of the font to force another placement of the umlaut character. First we have to save the current x-height of the font, because we'll change this font dimension and this is always done globally.

Then we compute the new x-height in such a way that the umlaut character is lowered to the base character. The value of .45ex depends on the METAFONT parameters with which the fonts were built. (Just try out, which value will look best.) If the new x-height is too low, it is not changed. Finally we call the \texttt{accent} primitive, reset the old x-height and insert the base character in the argument.
For all vowels we declare " to be a composite command which uses \bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to be sure that these definitions override the ones that are provided when the package fontenc with option OT1 is used. Therefore these declarations are postponed until the beginning of the document. Note these definitions only apply to some languages, but babel sets them for all languages – you may want to redefine \bbl@umlauta and/or \bbl@umlaute for a language in the corresponding ldf (using the babel switching mechanism, of course).

\AtBeginDocument{%
\DeclareTextCompositeCommand{"}{OT1}{a}{\bbl@umlauta{a}}%
\DeclareTextCompositeCommand{"}{OT1}{e}{\bbl@umlaute{e}}%
\DeclareTextCompositeCommand{"}{OT1}{i}{\bbl@umlaute{i}}%
\DeclareTextCompositeCommand{"}{OT1}{\i}{\bbl@umlaute{i}}%
\DeclareTextCompositeCommand{"}{OT1}{o}{\bbl@umlauta{o}}%
\DeclareTextCompositeCommand{"}{OT1}{u}{\bbl@umlauta{u}}%
\DeclareTextCompositeCommand{"}{OT1}{A}{\bbl@umlauta{A}}%
\DeclareTextCompositeCommand{"}{OT1}{E}{\bbl@umlaute{E}}%
\DeclareTextCompositeCommand{"}{OT1}{I}{\bbl@umlaute{I}}%
\DeclareTextCompositeCommand{"}{OT1}{O}{\bbl@umlauta{O}}%
\DeclareTextCompositeCommand{"}{OT1}{U}{\bbl@umlauta{U}}%
}%

Finally, the default is to use English as the main language.
\ifx\l@english\@undefined
\chardef\l@english\z@
\fi
\main@language{english}

Now we load definition files for engines.
\ifcase\bbl@engine\or
\input luababel.def
\or
\input xebabel.def
\fi

9 The kernel of Babel (babel.def, only \LaTeX)

9.1 The redefinition of the style commands
The rest of the code in this file can only be processed by \LaTeX, so we check the current format. If it is plain \TeX, processing should stop here. But, because of the need to limit the scope of the definition of \format, a macro that is used locally in the following \if statement, this comparison is done inside a group. To prevent \TeX from complaining about an unclosed group, the processing of the command \endinput is deferred until after the group is closed. This is accomplished by the command \aftergroup.
\def\format{lplain}
\ifx\fmtname\format
else
\def\format{LaTeX2e}
\ifx\fmtname\format
else

80
9.2 Creating languages

\texttt{\textbackslash babelprovide} is a general purpose tool for creating languages. Currently it just creates the language infrastructure, but in the future it will be able to read data from \texttt{ini} files, as well as to create variants. Unlike the \texttt{nil} pseudo-language, captions are defined, but with a warning to invite the user to provide the real string.

Depending on whether or not the language exists, we define two macros.
The hyphenrules option is handled with an auxiliary macro.

The reader of ini files. There are 3 possible cases: a section name (in the form [...] ), a comment (starting with ;) and a key/value pair. TODO - Work in progress.
\let\bbl@section\@empty
\let\bbl@savestrings\@empty
\let\bbl@savetoday\@empty
\let\bbl@savedate\@empty
\let\bbl@inireader\bbl@iniskip
\bbl@info{Importing data from babel-#1.ini for \languagename}
\loop
\endlinechar\m@ne
\read1 to \bbl@line
\endlinechar`\^^M
\if T\ifeof1F\fi T\relax % Trick, because inside \loop
\ifx\bbl@line\@empty\else
\expandafter\bbl@iniline\bbl@line\bbl@iniline
\fi
\repeat
\fi
\def\bbl@iniline#1\bbl@iniline{\@ifnextchar[\bbl@inisec{\@ifnextchar;\bbl@iniskip\bbl@inireader}#1\@@}%
\def\bbl@iniskip#1\@@{}% if starts with ;
\def\bbl@inisec[#1]#2\@@{% if starts with opening bracket
@nameuse{bbl@secpost@\bbl@section}% ends previous section
\def\bbl@section{#1}%
@nameuse{bbl@secpre@\bbl@section}% starts current section
\bbl@ifunset{bbl@secline@#1}{\let\bbl@inireader\bbl@iniskip}{
{\let\bbl@inireader\bbl@iniskip}
{\bbl@exp{\let\bbl@inireader\bbl@iniskip}<\bbl@secline@#1>}}}
\def\bbl@exportkey#1#2#3{\bbl@ifunset{bbl@@kv@#2}{\bbl@csarg\gdef{#1@\languagename}{#3}}{\expandafter\ifx\csname bbl@@kv@#2\endcsname\@empty\bbl@csarg\gdef{#1@\languagename}{#3}\else\bbl@exp{\global\let<#1@\languagename><bbl@@kv@#2>}%\fi}}
\def\bbl@exportkey#1#2#3{% \bbl@ifunset{bbl@kv@\bbl@section}{\bbl@csarg\edef{#1\bbl@section.\bbl@tempa}{\the\bbl@tempa}}
\let\bbl@inikv#1=#2\@@{% key=value
\bbl@trim\def\bbl@tempa{#1}%
\bbl@trim\toks{#2}%
\bbl@csarg\edef{#1\kv@\bbl@section.\bbl@tempa}{\the\bbl@toks}}
\let\bbl@secline@identification\bbl@inikv
\def\bbl@secpost@identification{% \bbl@exportkey{lname}{identification.name.english}{}
\bbl@exportkey{lbcp}{identification.tag.bcp47}{}
\bbl@exportkey{lotf}{identification.tag.opentype}{dflt}
\bbl@exp{\global\let<\bbl@@kv@identification}<\bbl@inireader}
Now captions and captions.licr, depending on the engine. And also for dates. They rely on a few auxiliary macros.

The auxiliary macro for captions define \caption{name}.

But dates are more complex. The full date format is stores in date.gregorian, so we must read it in non-Unicode engines, too.
Dates will require some macros for the basic formatting. They may be redefined by language, so "semi-public" names (camel case) are used. Oddly enough, the CLDR places particles like "de" inconsistently in either in the date or in the month name.

\newcommand\BabelDateSpace{\nobreakspace{}}
\newcommand\BabelDateDot{.\@}
\newcommand\BabelDateD[1]{{\number#1}}
\newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}
\newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}
\newcommand\BabelDateMMMM[1]{{}}
\csname month\romannumeral\month\name\endcsname
\newcommand\BabelDatey[1]{{\number#1}}
\newcommand\BabelDateyy[1]{{}}
\newcommand\BabelDateyyyy[1]{{}}

\def\bbl@replace@finish@iii#1{\bbl@exp{\def\#1####1####2####3{\the\toks@}}}
\def\bbl@TG@@date{\bbl@replace\bbl@toreplace{[ ]}{\BabelDateSpace{}}% \bbl@replace\bbl@toreplace{[]\}}{\BabelDateDot{}}% \bbl@replace\bbl@toreplace{[d]}{\BabelDated[1]}% \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd[1]}% \bbl@replace\bbl@toreplace{[M]}{\BabelDateM[1]}% \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM[1]}% \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM[1]}% \bbl@replace\bbl@toreplace{[y]}{\BabelDatey[1]}% \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy[1]}% \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy[1]}%}
\bbl@error{Currently two-digit years are restricted to the\range 0-9999.}%\bbl@error{There is little you can do. Sorry.}%\newcommand\BabelDateSpace{\nobreakspace{}}%\newcommand\BabelDateDot{.\@}%\newcommand\BabelDateD[1]{{\number#1}}%\newcommand\BabelDatedd[1]{{\ifnum#1<10 0\fi\number#1}}%\newcommand\BabelDateMM[1]{{\ifnum#1<10 0\fi\number#1}}%\newcommand\BabelDateMMMM[1]{{}}%\csname month\romannumeral\month\name\endcsname%\newcommand\BabelDatey[1]{{\number#1}}%\newcommand\BabelDateyy[1]{{}}%\newcommand\BabelDateyyyy[1]{{}}%\def\bbl@replace@finish@iii#1{\bbl@exp{\def\#1####1####2####3{\the\toks@}}}%\def\bbl@TG@@date{\bbl@replace\bbl@toreplace{[ ]}{\BabelDateSpace{}}% \bbl@replace\bbl@toreplace{[]\}}{\BabelDateDot{}}% \bbl@replace\bbl@toreplace{[d]}{\BabelDated[1]}% \bbl@replace\bbl@toreplace{[dd]}{\BabelDatedd[1]}% \bbl@replace\bbl@toreplace{[M]}{\BabelDateM[1]}% \bbl@replace\bbl@toreplace{[MM]}{\BabelDateMM[1]}% \bbl@replace\bbl@toreplace{[MMMM]}{\BabelDateMMMM[1]}% \bbl@replace\bbl@toreplace{[y]}{\BabelDatey[1]}% \bbl@replace\bbl@toreplace{[yy]}{\BabelDateyy[1]}% \bbl@replace\bbl@toreplace{[yyyy]}{\BabelDateyyyy[1]}%}
\bbl@error{Currently two-digit years are restricted to the\range 0-9999.}%\bbl@error{There is little you can do. Sorry.}%

9.3 Cross referencing macros

The \LaTeX{} book states:

The key argument is any sequence of letters, digits, and punctuation symbols; upper- and lowercase letters are regarded as different.
When the above quote should still be true when a document is typeset in a language that has active characters, special care has to be taken of the category codes of these characters when they appear in an argument of the cross referencing macros. When a cross referencing command processes its argument, all tokens in this argument should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in the \texttt{\LaTeX}book \cite{van1986} (Appendix D, page 382). The primitive \texttt{\ meaning} applied to a token expands to the current meaning of this token. For example, ‘\texttt{\ meaning\ A}’ with \texttt{\ A} defined as ‘\texttt{\ def\ A\#1\{B\}’ expands to the characters ‘macro:\#1->\B’ with all category codes set to ‘other’ or ‘space’.

\texttt{\newlabel} The macro \texttt{\label} writes a line with a \texttt{\newlabel} command into the \texttt{.aux} file to define labels.

\texttt{\@newl@bel} We need to change the definition of the \texttt{\LaTeX}-internal macro \texttt{\@newl@bel}. This is needed because we need to make sure that shorthand characters expand to their non-active version.

The following package options control which macros are to be redefined.

\begin{verbatim}
\DeclareOption{safe=none}{\let\bbl@opt@safe\@empty}
\DeclareOption{safe=bib}{\def\bbl@opt@safe{B}}
\DeclareOption{safe=ref}{\def\bbl@opt@safe{R}}
\end{verbatim}

First we open a new group to keep the changed setting of \texttt{\ protect local and then we set the \texttt{\safe@actives} switch to true to make sure that any shorthand that appears in any of the arguments immediately expands to its non-active self.

\begin{verbatim}
\ifx\bbl@opt@safe\@empty\else
\def\@newl@bel#1#2#3{\protect\bbl@ifunset{#1@#2}{}{\gdef\@multiplelabels{%\@latex@warning@no@line{There were multiply-defined labels}}%\@latex@warning@no@line{Label `#2' multiply defined}}%\global\@namedef{#1@#2}{#3}}
\end{verbatim}

\texttt{\@testdef} An internal \texttt{\LaTeX} macro used to test if the labels that have been written on the \texttt{.aux} file have changed. It is called by the \texttt{\enddocument} macro. This macro needs to be completely rewritten, using \texttt{\meaning}. The reason for this is that in some cases the expansion of \#1@\#2 contains the same characters as the \#3; but the character codes differ. Therefore \texttt{\LaTeX} keeps reporting that the labels may have changed.

\begin{verbatim}
\CheckCommand*{\@testdef[3]}{\def\reserved@a{#3}}\def\reserved@b{#3}\expandafter{\ifx\csname#1@#2\endcsname\reserved@b\else\@tempswatrue\@latex@warning@no@line{Label `#2' multiply defined}}%\global\@namedef{#1@#2}{#3}}
\end{verbatim}

Now that we made sure that \texttt{\@testdef} still has the same definition we can rewrite it. First we make the shorthandls ‘safe’.

\begin{verbatim}
\def\reserved@b{#3}{\@safe@activestru
\end{verbatim}
Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which is being checked.

\begin{verbatim}
\expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname
\end{verbatim}

Then we define \bbl@tempb just as \@newl@bel does it.

\begin{verbatim}
\def\bbl@tempb{#3}\
\@safe@activesfalse
\end{verbatim}

When the label is defined we replace the definition of \bbl@tempa by its meaning.

\begin{verbatim}
\ifx\bbl@tempa\relax
\else
\edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}\
fi
\end{verbatim}

We do the same for \bbl@tempb.

\begin{verbatim}
\edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}\
\end{verbatim}

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.

\begin{verbatim}
\ifx\bbl@tempa\bbl@tempb
\else
\tempswatrue
\fi}
\end{verbatim}

\ref The same holds for the macro \ref that references a label and \pageref to reference a page. So we redefine \ref and \pageref. While we change these macros, we make them robust as well (if they weren’t already) to prevent problems if they should become expanded at the wrong moment.

\begin{verbatim}
\@expandtwoargs\in@{R}\bbl@opt@safe
\ifin@
\bbl@redefinerobust\ref#1{\
\@safe@activestrue\org@ref{#1}\@safe@activesfalse}
\bbl@redefinerobust\pageref#1{\
\@safe@activestrue\org@pageref{#1}\@safe@activesfalse}
\else
\let\org@ref\ref
\let\org@pageref\pageref
\fi
\end{verbatim}

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro, \@citex. It is this internal macro that picks up the argument(s), so we redefine this internal macro and leave \cite alone. The first argument is used for typesetting, so the shorthands need only be deactivated in the second argument.

\begin{verbatim}
\@expandtwoargs\in@{B}\bbl@opt@safe
\ifin@
\bbl@redefine\@citex[#1]#2{\
\@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse
\org@@citex[#1]{\@tempa}}
\end{verbatim}

Unfortunately, the packages natbib and cite need a different definition of \@citex... To begin with, natbib has a definition for \@citex with three arguments... We only know that a package is loaded when \begin{document} is executed, so we need to postpone the different redefinition.

\begin{verbatim}
\AtBeginDocument{%
\ifpackageloaded{natbib}{%
\end{verbatim}
Notice that we use \def here instead of \bbl@redefine because \org@@citex is already defined and we don't want to overwrite that definition (it would result in parameter stack overflow because of a circular definition).
(Recent versions of natbib change dynamically \citex, so PR4087 doesn’t seem fixable in a simple way. Just load natbib before.)

The package cite has a definition of \citex where the shorthands need to be
turned off in both arguments.

\AtBeginDocument{\
% \ifpackageloaded{cite}\
  \def\citex[#1]#2{\
    \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}\
% }{}\

\nocite The macro \nocite which is used to instruct Bi\TeX{} to extract uncited references from the database.

\bbl@redefine\nocite#1{\
% \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}\

\bibcite The macro that is used in the .aux file to define citation labels. When packages such as natbib or cite are not loaded its second argument is used to typeset the citation label. In that case, this second argument can contain active characters but is used in an environment where \@safe@activestrue is in effect. This switch needs to be reset inside the \hbox which contains the citation label. In order to determine during .aux file processing which definition of \bibcite is needed we define \bibcite in such a way that it redefines itself with the proper definition.

\def\bbl@bibcite#1#2{\org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.

\def\bbl@cite@choice{%
  First we give \bibcite its default definition.
  \global\let\bibcite\bbl@bibcite
  Then, when natbib is loaded we restore the original definition of \bibcite.
  %\ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}
  For cite we do the same.
  %\ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}
  Make sure this only happens once.
  \global\let\bbl@cite@choice\relax}
When a document is run for the first time, no .aux file is available, and \bibcite will not yet be properly defined. In this case, this has to happen before the document starts.

\AtBeginDocument{\bbl@cite@choice}
\bibitem One of the two internal \LaTeX macros called by \bibitem that write the citation label on the .aux file.
\bbl@redefine\bibitem#1{%
 \@safe@activestrue\org@bibitem#1\@safe@activesfalse}
\else
 \let\org@nocite
ocite
 \let\org@citex@citetex
 \let\org@bibcite\bibcite
 \let\org@bibitem\bibitem
\fi

9.4 Marks
\markright Because the output routine is asynchronous, we must pass the current language attribute to the head lines, together with the text that is put into them. To achieve this we need to adapt the definition of \markright and \markboth somewhat. We check whether the argument is empty; if it is, we just make sure the scratch token register is empty. Next, we store the argument to \markright in the scratch token register. This way these commands will not be expanded later, and we make sure that the text is typeset using the correct language settings. While doing so, we make sure that active characters that may end up in the mark are not disabled by the output routine kicking in while \@safe@activestrue is in effect.
\bbl@redefine\markright#1{%
 \bbl@ifblank{#1}%
 {\org@markright{}}%
 {\toks@{#1}%
 \bbl@exp{%
 ///\org@markright{\protect{\foreignlanguage{\languagename}{\protect\bbl@restore@actives\the\toks}}}}}}
\markboth The definition of \markboth is equivalent to that of \markright, except that we need two token registers. The documentclasses report and book define and set the headings for the page. While doing so they also store a copy of \markboth in \@mkboth. Therefore we need to check whether \@mkboth has already been set. If so we need to do that again with the new definition of \markboth.
\ifx\@mkboth\markboth
 \def\bbl@tempc{\let\@mkboth\markboth}
 \else
 \def\bbl@tempc{}
 \fi

Now we can start the new definition of \markboth
\bbl@redefine\markboth#1#2{%
 \protectededef\bbl@tempb#1{%
 \protect{\foreignlanguage{\languagename}{\protect\bbl@restore@actives#1}}%
 \bbl@ifblank{#1}%
 {\toks@{}}%
 {\toks@{\expandafter{\bbl@tempb{#1}}}%
 \bbl@ifblank{#2}%
 {\@tempokern{}}%
 {\@tempokern\expandafter{\bbl@tempb{#2}}}%
 \bbl@exp{\\\org@markboth{\the\toks}{\the\@tempokern}}}
9.5 Preventing clashes with other packages

9.5.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the page a certain fragment of text appears on. This can be achieved by the following piece of code:

\begin{verbatim}
\% \ifthenelse{\isodd{\pageref{some:label}}} \%
\% \{code for odd pages\}
\% \{code for even pages\}
\%
\end{verbatim}

In order for this to work the argument of \isodd needs to be fully expandable. With the above redefinition of \pageref it is not in the case of this example. To overcome that, we add some code to the definition of \ifthenelse to make things work. The first thing we need to do is check if the package ifthen is loaded. This should be done at \begin{document} time.

\begin{verbatim}
\@expandtwoargs\in@{R}\bbl@opt@safe
\ifin@
\AtBeginDocument{\
\@ifpackageloaded{ifthen}{\nThen we can redefine \ifthenelse:
\bbl@redefine@long\ifthenelse#1#2#3{\n We want to revert the definition of \pageref and \ref to their original definition for the first argument of \ifthenelse, so we first need to store their current meanings.

\begin{verbatim}
\let\bbl@temp@pref\pageref
\let\pageref\org@pageref
\let\bbl@temp@ref\ref
\let\ref\org@ref
\end{verbatim}

Then we can set the \@safe@actives switch and call the original \ifthenelse. In order to be able to use shorthands in the second and third arguments of \ifthenelse the resetting of the switch \textit{and} the definition of \pageref happens inside those arguments. When the package wasn't loaded we do nothing.

\begin{verbatim}
\@safe@activestrue
\org@ifthenelse{#1}\%
\let\pageref\bbl@temp@pref
\let\ref\bbl@temp@ref\%
\@safe@activesfalse\%
\let\bbl@temp@pref\pageref\%
\let\pageref\org@pageref\%
\let\bbl@temp@ref\ref\%
\let\ref\org@ref\%
\end{verbatim}

\end{verbatim}
\end{verbatim}
\end{verbatim}
9.5.2 varioref

\@@vpageref When the package varioref is in use we need to modify its internal command
\vrefpagenum \Ref in order to prevent problems when an active character ends up in the argument of \vref.

\AtBeginDocument{%  
@ifpackageloaded{varioref}{  
\bbl@redefine\@@vpageref#1[#2]#3{%  
 \@safe@activestrue  
 \org@@@vpageref{#1} [#2]{#3}  
 \@safe@activesfalse}%  

The same need to happen for \vrefpagenum.
\bbl@redefine\vrefpagenum#1#2{%  
 \@safe@activestrue  
 \org\vrefpagenum{#1}{#2}  
 \@safe@activesfalse}%  

The package varioref defines \Ref to be a robust command which uppercases the first character of the reference text. In order to be able to do that it needs to access the exandable form of \ref. So we employ a little trick here. We redefine the (internal) command \Ref\textsubscript{\texttt{u}} to call \org\ref instead of \ref. The disadvantage of this solution is that whenever the definition of \Ref changes, this definition needs to be updated as well.

\expandafter\def\csname Ref \endcsname#1{%  
 \protected@edef\@tempa{\org\ref{#1}}\expandafter\MakeUppercase\@tempa}  
}{}%  
}}

9.5.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with the hhline package. The reason is that it uses the ‘:’ character which is made active by the french support in babel. Therefore we need to reload the package when the ‘:’ is an active character.
So at \begin{document} we check whether hhline is loaded.
\AtEndOfPackage{%  
\AtBeginDocument{%  
@ifpackageloaded{hhline}%  

Then we check whether the expansion of \normal@char: is not equal to \relax.
\expandafter\ifx\csname normal@char\endcsname\relax  
\else  

In that case we simply reload the package. Note that this happens after the category code of the @-sign has been changed to other, so we need to temporarily change it to letter again.
\makeatletter  
\def\@currrname{hhline}\input{hhline.sty}\makeatother  
}{}%  
}
9.5.4 hyperref

A number of interworking problems between babel and hyperref are tackled by hyperref itself. The following code was introduced to prevent some annoying warnings but it broke bookmarks. This was quickly fixed in hyperref, which essentially made it no-op. However, it will not removed for the moment because hyperref is expecting it.

\AtBeginDocument{\pdfstringdefDisableCommands\ifx\pdfstringdefDisableCommands\@undefined\else\pdfstringdefDisableCommands{\languageshorthands{system}}\fi}

9.5.5 fancyhdr

The package fancyhdr treats the running head and footer lines somewhat differently as the standard classes. A symptom of this is that the command \foreignlanguage which babel adds to the marks can end up inside the argument of \MakeUppercase. To prevent unexpected results we need to define \FOREIGNLANGUAGE here.

\DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{\lowercase{\foreignlanguage{#1}}}

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first argument is an encoding mnemonic, the second and third arguments are font family names.

\def\substitutefontfamily#1#2#3{\lowercase{\immediate\openout15=#1#2.fd\relax}\immediate\write15{\string\ProvidesFile{#1#2.fd}[	he\year/\two@digits{\the\month}/\two@digits{\the\day} space generated font description file]^^J\string\DeclareFontFamily{#1}{#2}{}\string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}\string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}\string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}\string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}\string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}\string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}\string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}\string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J}\closeout15}

This command should only be used in the preamble of a document.

9.6 Encoding and fonts

Because documents may use non-ASCII font encodings, we make sure that the logos of \TeX and \LaTeX always come out in the right encoding. There is a list of non-ASCII encodings. Unfortunately, fontenc deletes its package options, so we must guess which encodings has been loaded by traversing \@filelist to search for ⟨enc⟩enc.def. If a non-ASCII has been loaded, we define versions of \TeX and \LaTeX for them using \ensureascii. The default ASCII encoding is set, too (in reverse order): the “main” encoding (when the document begins), the last loaded, or OT1.
Now comes the old deprecated stuff (with a little change in 3.9l, for fontspec). The first thing we need to do is to determine, at \begin{document}, which latin fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would be nice to still have Roman numerals come out in the Latin encoding. So we first assume that the current encoding at the end of processing the package is the Latin encoding.

\latex \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefore we check at the execution of \begin{document} whether it was loaded with the T1 option. The normal way to do this (using @ifpackageloaded) is disabled for this package. Now we have to revert to parsing the internal macro \@filelist which contains all the filenames loaded.

\latex \AtBeginDocument{%
Then we can define the command \textlatin which is a declarative switch to a latin font-encoding. Usage of this macro is deprecated.

\textlatin This command takes an argument which is then typeset using the requested font encoding. In order to avoid many encoding switches it operates in a local scope.

9.7 Basic bidi support

Work in progress. This code is currently placed here for practical reasons.

- pdftex provides a minimal support for bidi text, and it must be done by hand. Vertical typesetting is not possible.

- XeTeX fares somewhat better, thanks to the font engine and a few additional tools. However, very little is done at the paragraph level.

- LuaTeX could provide the most complete solution, as we can manipulate almost freely the node list, the generated lines, and so on, but bidi text does not work out of the box and some development is necessary. It also provides tools to properly set left-to-right and right-to-left page layouts. As LuaTeX-ja shows, vertical typesetting is possible.
\directlua{
if tex.#1dir == 'TLT' then
tex.sprint('0')
elseif tex.#1dir == 'TRT' then
tex.sprint('1')
end}
def \bbl@getluadir#1{%
\ifcase\bbl@engine
\or
\AddBabelHook{babel-bidi}{afterextras}{\bbl@ensuredir}
\DisableBabelHook{babel-bidi}
def \bbl@getluadir#1{%
\def \bbl@setdir#1#2#3{% \1=text/par.. \2=\textdir.. \3=0 lr/1 rl
\ifcase#3\relax
\ifcase\bbl@getluadir(#1)\relax\else
#2 TLT\relax
\fi
\else
\ifcase\bbl@getluadir(#1)\relax
#2 TRT\relax
\fi
\fi
\else
\fi}
def \bbl@setdir#1#2#3{% \1=text/par.. \2=\textdir.. \3=0 lr/1 rl
\ifcase#3\relax
\ifcase\bbl@getluadir(#1)\relax\else
#2 TLT\relax
\fi
\else
\ifcase\bbl@getluadir(#1)\relax
#2 TRT\relax
\fi
\fi
\else
\fi}
def \bbl@textdir{%
def \bbl@pardir{%
def \bbl@bodydir{%
def \bbl@pagedir{%
def \bbl@dirparastext{%
\AddBabelHook{babel-bidi}{afterextras}{\bbl@ensuredir}
\DisableBabelHook{babel-bidi}
\newcount\bbl@dirlevel
\chardef\bbl@thetextdir\z@
def \bbl@textdir#1{%
\ifcase#1\relax
\chardef\bbl@thetextdir\z@
\bbl@textdir@i\beginL\endL
\else
\chardef\bbl@thetextdir\@ne
\bbl@textdir@i\beginR\endR
\fi}
def \bbl@textdir@i#1#2{%
\ifhmode
\ifnum\currentgrouplevel>\z@
\ifnum\currentgrouplevel=\bbl@dirlevel
\bbl@error{Multiple bidi settings inside a group}%
(I'll insert a new group, but expect wrong results.)%
\bgroup\aftergroup\aftergroup\aftergroup\egroup
\else
\bgroup\aftergroup\aftergroup\aftergroup\egroup
\fi
\else
\bgroup\aftergroup\aftergroup\aftergroup\egroup
\fi}
def \bbl@parastdir%i#1#2{%
\ifnum\currentgrouplevel>\z@
\bbl@error{Multiple bidi settings inside a group}%
(I'll insert a new group, but expect wrong results.)%
\bgroup\aftergroup\aftergroup\aftergroup\egroup
\else
\bgroup\aftergroup\aftergroup\aftergroup\egroup
\fi}
The following command is executed only if there is a right-to-left script (once). It activates the \everypar hack for xetex, to properly handle the par direction. Note text and par dirs are decoupled.

\def\bbl@xeeverypar{% 
\ifcase\bbl@thepardir\else
{\setbox\z@\lastbox\beginR\box\z@}%
\fi
\ifcase\bbl@thetextdir\else\beginR\fi}%
\let\bbl@severypar\everypar
\newtoks\everypar
\everypar=\bbl@severypar\bbl@xeeverypar\the\everypar}
\fi

\ifx\loadlocalcfg\@undefined
\@ifpackagewith{babel}{noconfigs}%
\let\loadlocalcfg\@gobble
\def\loadlocalcfg#1{%
\InputIfFileExists{#1.cfg}{
\typeout{*************************************^^J%
* Local config file #1.cfg used^^J%
*}}%
\@empty}}
\fi

\long\def\protected@write#1#2#3{%
\begingroup
\let\thepage\relax
\缺陷 math disc insert vcent mathchoice
\or\or\or\or\or\or % output math disc insert vcent mathchoice
\or
\aftergroup#2% 14 \begingroup
\else
\bgroup\aftergroup#2\aftergroup\egroup
\fi
\fi
\bbl@dirlevel\currentgrouplevel
\fi
\def\bbl@pardir#1{
\chardef\bbl@thepardir#1\relax}
\let\bbl@bodydir\@gobble
\let\bbl@pagedir\@gobble
\def\bbl@dirparastext{
\chardef\bbl@thepardir\bbl@thetextdir}

\9.8 Local Language Configuration
\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language definition file. This can be done by creating a file with the same name as the language definition file, but with the extension .cfg. For instance the file norsk.cfg will be loaded when the language definition file norsk.ldf is loaded. For plain-based formats we don’t want to override the definition of \loadlocalcfg from plain.def.
\if\loadlocalcfg\undefined
\@ifpackagewith{babel}{noconfigs}%
\let\loadlocalcfg\gobble
\def\loadlocalcfg#1{%
\InputIfFileExists{#1.cfg}{
\typeout{***********\empty}}%
\@empty}}
\\fi

\@unexpandable@protect\undefined
\def\unexpandable@protect\@expand@protect\@expand@protect\@expand@protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpand\protect\noexpand\noexpen...
10 Multiple languages (switch.def)

Plain TeX version 3.0 provides the primitive \language that is used to store the current language. When used with a pre-3.0 version this function has to be implemented by allocating a counter.

\adddialect  The macro \adddialect can be used to add the name of a dialect or variant language, for which an already defined hyphenation table can be used.

\bbl@iflanguage executes code only if the language \l@ exists. Otherwise raises an error.

The argument of \bbl@fixname has to be a macro name, as it may get “fixed” if casing (lc/uc) is wrong. It’s intended to fix a long-standing bug when \foreignlanguage and the like appear in a \MakeXXXcase. However, a lowercase form is not imposed to improve backward compatibility (perhaps you defined a language named MYLANG, but unfortunately mixed case names cannot be trapped). Note \l@ is encapsulated, so that its case does not change.
\iflanguage  Users might want to test (in a private package for instance) which language is currently active. For this we provide a test macro, \iflanguage, that has three arguments. It checks whether the first argument is a known language. If so, it compares the first argument with the value of \language. Then, depending on the result of the comparison, it executes either the second or the third argument.

\begin{verbatim}
def\iflanguage#1{%  \bbl@iflanguage{#1}{%    \ifnum\csname l@#1\endcsname=\language\expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi}}
\end{verbatim}

10.1 Selecting the language

\selectlanguage  The macro \selectlanguage checks whether the language is already defined before it performs its actual task, which is to update \language and activate language-specific definitions.

To allow the call of \selectlanguage either with a control sequence name or with a simple string as argument, we have to use a trick to delete the optional escape character.

To convert a control sequence to a string, we use the \string primitive. Next we have to look at the first character of this string and compare it with the escape character. Because this escape character can be changed by setting the internal integer \escapechar to a character number, we have to compare this number with the character of the string. To do this we have to use \TeX's backquote notation to specify the character as a number.

If the first character of the \string'ed argument is the current escape character, the comparison has stripped this character and the rest in the 'then' part consists of the rest of the control sequence name. Otherwise we know that either the argument is not a control sequence or \escapechar is set to a value outside of the character range 0–255.

If the user gives an empty argument, we provide a default argument for \string. This argument should expand to nothing.

\begin{verbatim}
\let\bbl@select@type\z@
edefselectlanguage{%  \noexpand\protect\csname selectlanguage \endcsname}}
\end{verbatim}

Because the command \selectlanguage could be used in a moving argument it expands to \protect\selectlanguage. Therefore, we have to make sure that a macro \protect exists. If it doesn't it is \let to \relax.

\begin{verbatim}
\ifx\@undefined\protect\let\protect\relax\fi
\end{verbatim}

As \LaTeX 2.09 writes to files expanded whereas \LaTeXe takes care not to expand the arguments of \write statements we need to be a bit clever about the way we add information to .aux files. Therefore we introduce the macro \xstring which should expand to the right amount of \string's.

\begin{verbatim}
\ifx\documentclass\@undefined\def\xstring{\string\string\string}\else\let\xstring\string\fi
\end{verbatim}

Since version 3.5 babel writes entries to the auxiliary files in order to typeset table of contents etc. in the correct language environment.
But when the language change happens inside a group the end of the group doesn't write anything to the auxiliary files. Therefore we need \TeX's \texttt{aftergroup} mechanism to help us. The command \texttt{aftergroup} stores the token immediately following it to be executed when the current group is closed. So we define a temporary control sequence \texttt{\bbl@pop@language} to be executed at the end of the group. It calls \texttt{\bbl@set@language} with the name of the current language as its argument.

The previous solution works for one level of nesting groups, but as soon as more levels are used it is no longer adequate. For that case we need to keep track of the nested languages using a stack mechanism. This stack is called \texttt{\bbl@language@stack} and initially empty.

\begin{verbatim}
def\bbl@language@stack{}
\end{verbatim}

When using a stack we need a mechanism to push an element on the stack and to retrieve the information afterwards.

The stack is simply a list of language names, separated with a '+' sign; the push function can be simple:

\begin{verbatim}
def\bbl@push@language{\xdef\bbl@language@stack{\languagename+\bbl@language@stack}}
\end{verbatim}

Retrieving information from the stack is a little bit less simple, as we need to remove the element from the stack while storing it in the macro \texttt{\languagename}. For this we first define a helper function.

This macro stores its first element (which is delimited by the '+'-sign) in \texttt{\languagename} and stores the rest of the string (delimited by '-') in its third argument.

\begin{verbatim}
def\bbl@pop@lang#1+#2-#3{\edef\languagename{#1}\xdef#3{#2}}
\end{verbatim}

The reason for the somewhat weird arrangement of arguments to the helper function is the fact it is called in the following way. This means that before \texttt{\bbl@pop@lang} is executed \TeX first expands the stack, stored in \texttt{\bbl@language@stack}. The result of that is that the argument string of \texttt{\bbl@pop@lang} contains one or more language names, each followed by a '+'-sign (zero language names won't occur as this macro will only be called after something has been pushed on the stack) followed by the '-'-sign and finally the reference to the stack.

\begin{verbatim}
def\bbl@pop@language{}
\end{verbatim}

Once the name of the previous language is retrieved from the stack, it is fed to \texttt{\bbl@set@language} to do the actual work of switching everything that needs switching.

The macro \texttt{\bbl@set@language} takes care of switching the language environment and of writing entries on the auxiliary files. For historical reasons, language names can be either language of \texttt{\language}. To catch either form a trick is used, but
unfortunately as a side effect the catcodes of letters in \languagename are not well
defined. The list of auxiliary files can be extended by redefining
\BabelContentsFiles, but make sure they are loaded inside a group (as aux, toc,
\lof, and \lot do) or the last language of the document will remain active afterwards.
We also write a command to change the current language in the auxiliary files.

\def\BabelContentsFiles{toc,lof,lot}
\def\bbl@set@language#1{%
  \edef\languagename{%
    \ifnum\escapechar=\expandafter`\string#1\@empty
      \else\string#1\@empty\fi}%
  \select@language\languagename\expandafter\ifx\csname date\languagename\endcsname\relax
  \else\fi
}
\def\select@language#1{%
  \ifnum\bbl@hymapsel=\@cclv
    \chardef\bbl@hymapsel4\relax
  \fi
  \edef\languagename{#1}%
  \bbl@fixname\languagename
  \bbl@iflanguage\languagename{%
    \expandafter\ifx\csname date\languagename\endcsname\relax
      \bbl@error
      \{Unknown language '\#1'. Either you have\%
      missed its name, it has not been installed,\%
      or you requested it in a previous run. Fix its name,\%
      install it or just rerun the file, respectively\%
      \{You may proceed, but expect wrong results\%
    \}else
      \let\bbl@select@type@z@
      \expandafter\bbl@switch\expandafter{\languagename}%
    \fi}

A bit of optimization. Select in heads/footses the language only if necessary. The real
thing is in babel.def.
\let\select@language@x\select@language

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring \TeX in a certain pre-defined state.
The name of the language is stored in the control sequence \languagename.
Then we have to redefine \originalTeX to compensate for the things that have
been activated. To save memory space for the macro definition of \originalTeX, we
construct the control sequence name for the \noextras{lang} command at
definition time by expanding the \cname primitive.
Now activate the language-specific definitions. This is done by constructing the
names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.
The switching of the values of \lefthyphenmin and \righthyphenmin is somewhat
different. First we save their current values, then we check if \langle lang \rangle hyphenmins is
defined. If it is not, we set default values (2 and 3), otherwise the values in
\langle lang \rangle hyphenmins will be used.
\def\bbl@switch#1{%
  \originalTeX
  \expandafter\def\expandafter\originalTeX\expandafter{%
The \texttt{otherlanguage} environment can be used as an alternative to using the \texttt{\selectlanguage} declarative command. When you are typesetting a document which mixes left-to-right and right-to-left typesetting you have to use this environment in order to let things work as you expect them to.

The \texttt{\ignorespaces} command is necessary to hide the environment when it is entered in horizontal mode.

\begin{verbatim}
\long\def\otherlanguage#1{\ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel=\thr@@\fi
\csname selectlanguage \endcsname{#1} \ignorespaces}
\end{verbatim}

The \texttt{\endotherlanguage} part of the environment tries to hide itself when it is called in horizontal mode.

\begin{verbatim}
\long\def\endotherlanguage{\global\@ignoretrue \ignorespaces}
\end{verbatim}

The \texttt{otherlanguage*} environment is meant to be used when a large part of text from a different language needs to be typeset, but without changing the translation of words such as 'figure'. This environment makes use of \texttt{\foreign@language*}.

\begin{verbatim}
\expandafter\ifx\csname\endcsname\otherlanguage*\endcsname\endcsname#1\{
\ifnum\bbl@hymapsel=\@cclv\let\bbl@hymapsel=\thr@@\fi
\csname selectlanguage \endcsname[#1]\ignorespaces
\end{verbatim}
At the end of the environment we need to switch off the extra definitions. The grouping mechanism of the environment will take care of resetting the correct hyphenation rules and "extras".

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage command. This command takes two arguments, the first argument is the name of the language to use for typesetting the text specified in the second argument. Unlike \selectlanguage this command doesn't switch everything, it only switches the hyphenation rules and the extra definitions for the language specified. It does this within a group and assumes the \extras⟨lang⟩ command doesn't make any \global changes. The coding is very similar to part of \selectlanguage. \bbl@beforeforeign is a trick to fix a bug in bidi texts. \foreignlanguage is supposed to be a 'text' command, and therefore it must emit a \leavevmode, but it does not, and therefore the indent is placed on the opposite margin. For backward compatibility, however, it is done only if a right-to-left script is requested; otherwise, it is no-op.

(3.11) \foreignlanguage* is a temporary, experimental macro for a few lines with a different script direction, while preserving the paragraph format (thank the braces around \par, things like \hangindent are not reset). Do not use it in production, because its semantics and its syntax may change (and very likely will, or even it could be removed altogether). Currently it enters in vmode and then selects the language (which in turn sets the paragraph direction).

(3.11) Also experimental are the hook foreign and foreign*. With them you can redefine \BabelText which by default does nothing. Its behaviour is not well defined yet. So, use it in horizontal mode only if you do not want surprises. In other words, at the beginning of a paragraph \foreignlanguage enters into hmode with the surrounding lang, and with \foreignlanguage* with the new lang.

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environment. First we need to store the name of the language and check that it is a known language. Then it just calls \bbl@switch.
\bbl@patterns This macro selects the hyphenation patterns by changing the \language register. If special hyphenation patterns are available specifically for the current font encoding, use them instead of the default. It also sets hyphenation exceptions, but only once, because they are global (here \lccode's have been set, too). \bbl@hyphenation@ is set to relax until the very first \babelhyphenation, so do nothing with this value. If the exceptions for a language (by its number, not its name, so that :ENC is taken into account) have been set, then use \hyphenation with both global and language exceptions and empty the latter to mark they must not be set again.

\bbl@patterns
\let\bbl@Hyphlist@\@empty
\let\bbl@Hyphenation@\@relax
\let\bbl@pttnlist@\@empty
\let\bbl@patterns@\@relax
\let\bbl@hymapsel=\@cclv
\def\bbl@patterns#1{%
\language=#1:\f@encoding\endcsname\relax
\csname l@#1:\f@encoding\endcsname\edef\bbl@tempa{#1}\
else
\csname l@#1:\f@encoding\endcsname\edef\bbl@tempa{#1:\f@encoding}\fi
@expandtwoargs\bbl@usehooks{patterns}{{#1}{\bbl@tempa}}%
@ifundefined{bbl@hyphenation@}{}{% Can be \relax!
\begingroup
@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
@ifundefined{bbl@hyphenation@#1}{}% Can be \relax!
\begingroup
@expandtwoargs\bbl@usehooks{hyphenation}{{#1}{\bbl@tempa}}%
\hyphenation{%
\bbl@hyphenation@
\@ifundefined{bbl@hyphenation@#1}{}% Can be \relax!
\edef\csname bbl@hyphenation@\number\language,\endcsname{%
\fi
\endgroup
\endgroup
}

\hyphenrules The environment hyphenrules can be used to select just the hyphenation rules. This environment does not change \language name and when the hyphenation rules specified were not loaded it has no effect. Note however, \lccode's and font encodings are not set at all, so in most cases you should use otherlanguage*.
\def\hyphenrules#1{\edef\languagename{#1}\bbl@fixname\languagename}\bbl@iflanguage\languagename{%\expandafter\bbl@patterns\expandafter{\languagename}\languageshorthands{none}\expandafter\ifx\csname\languagename hyphenmins\endcsname\relax\set@hyphenmins\tw@\thr@@\relax\else\expandafter\expandafter\expandafter\set@hyphenmins\csname\languagename hyphenmins\endcsname\relax\fi}}\let\endhyphenrules\@empty

\providehyphenmins The macro \providehyphenmins should be used in the language definition files to provide a default setting for the hyphenation parameters \lefthyphenmin and \righthyphenmin. If the macro \langle lang\rangle hyphenmins is already defined this command has no effect.

\def\providehyphenmins#1#2{\expandafter\ifx\csname #1hyphenmins\endcsname\relax\@namedef{#1hyphenmins}{#2}\fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects two values as its argument.

\def\set@hyphenmins#1#2{\lefthyphenmin#1\relax\righthyphenmin#2\relax}

\ProvidesLanguage The identification code for each file is something that was introduced in \TeX. When the command \ProvidesFile does not exist, a dummy definition is provided temporarily. For use in the language definition file the command \ProvidesLanguage is defined by babel. Depending on the format, ie, on if the former is defined, we use a similar definition or not.

\ifx\ProvidesFile\@undefined\def\ProvidesLanguage#1[#2 #3 #4]{\wlog{Language: \#1 \#4 \#3 <\#2>}\}\else\def\ProvidesLanguage#1{%\begingroup\catcode`\ 10 %\@makeother/\@ifnextchar[\]{\@provideslanguage{#1}}{\@provideslanguage{#1}[\]}}\def\@provideslanguage#1[#2]{\wlog{Language: \#1 \#2}}\endgroup\fi

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’ of babel, ie. the part that is loaded in the format; the second version is defined in babel.def. The version in the format just checks the category code of the ampersand and then loads babel.def.
The category code of the ampersand is restored and the macro calls itself again with the new definition from babel.def

\def\LdfInit{
\chardef\atcatcode=\catcode`@
\catcode`@=11\relax
\input babel.def\relax
\catcode`@=\atcatcode \let\atcatcode\relax
\LdfInit}

\originalTeX The macro \originalTeX should be known to \TeX at this moment. As it has to be expandable we let it to \empty instead of \relax.

\ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the macro which initialises the save mechanism, \babel@beginsave, is not considered to be undefined.

\ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

A few macro names are reserved for future releases of babel, which will use the concept of 'locale':

\providecommand\setlocale{
\bbl@error{Not yet available}
\let\uselocale\setlocale
\let\locale\setlocale
\let\selectlocale\setlocale
\let\textlocale\setlocale
\let\textlanguage\setlocale
\let\languagetext\setlocale

10.2 Errors

\@nolanerr The babel package will signal an error when a document tries to select a language that hasn’t been defined earlier. When a user selects a language for which no hyphenation patterns were loaded into the format he will be given a warning about that fact. We revert to the patterns for \language=0 in that case. In most formats that will be (US)english, but it might also be empty.

\@nopatterns When the package was loaded without options not everything will work as expected. An error message is issued in that case. When the format knows about \PackageError it must be \TeX\, so we can safely use its error handling interface. Otherwise we’ll have to ‘keep it simple’.

\@noopterr
11 Loading hyphenation patterns

The following code is meant to be read by initex because it should instruct \TeX to read hyphenation patterns. To this end the docstrip option patterns can be used to include this code in the file hyphen.cfg. Code is written with lower level macros. toks8 stores info to be shown when the program is run.

We want to add a message to the message \LaTeX 2.09 puts in the \everyjob register.
This could be done by the following code:

```latex
\let\orgeveryjob\everyjob
\def\everyjob#1{\orgeveryjob{#1} \orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{hyphenation patterns for \the\loaded@patterns loaded.}}} \let\everyjob\orgeveryjob \let\orgeveryjob\@undefined}
```

The code above redefines the control sequence `\everyjob` in order to be able to add something to the current contents of the register. This is necessary because the processing of hyphenation patterns happens long before \LaTeX fills the register. There are some problems with this approach though.

- When someone wants to use several hyphenation patterns with SL\TeX the above scheme won’t work. The reason is that SL\TeX overwrites the contents of the `\everyjob` register with its own message.

- Plain \TeX does not use the `\everyjob` register so the message would not be displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed when creating a new format file there is one command that is sure to be used, `\dump`. Therefore the original `\dump` is saved in `\org\dump` and a new definition is supplied. To make sure that \LaTeX 2.09 executes the `@begindocumenthook` we would want to alter `\begin{document}`, but as this done too often already, we add the new code at the front of `@preamblecmds`. But we can only do that after it has been defined, so we add this piece of code to `\dump`.

This new definition starts by adding an instruction to write a message on the terminal and in the transcript file to inform the user of the preloaded hyphenation patterns.

Then everything is restored to the old situation and the format is dumped.

\process@line

Each line in the file `language.dat` is processed by `\process@line` after it is read. The first thing this macro does is to check whether the line starts with `. When the first token of a line is an =, the macro `\process@synonym` is called; otherwise the macro `\process@language` will continue.

```latex
\def\process@line#1#2 #3 #4 {%
\ifx=#1% 107
```
This macro takes care of the lines which start with an \texttt{=}. It needs an empty token register to begin with. \texttt{bbl@languages} is also set to empty.

When no languages have been loaded yet, the name following the \texttt{=} will be a synonym for hyphenation register 0. So, it is stored in a token register and executed when the first pattern file has been processed. (The \texttt{\relax} just helps to the \texttt{\if} below catching synonyms without a language.) Otherwise the name will be a synonym for the language loaded last. We also need to copy the hyphenmin parameters for the synonym.

The macro \texttt{\process@language} is used to process a non-empty line from the ‘configuration file’. It has three arguments, each delimited by white space. The first argument is the ‘name’ of a language; the second is the name of the file that contains the patterns. The optional third argument is the name of a file containing hyphenation exceptions.

The first thing to do is call \texttt{\addlanguage} to allocate a pattern register and to make that register ‘active’. Then the ‘name’ of the language that will be loaded now is added to the token register \texttt{toks8}. and finally the pattern file is read. For some hyphenation patterns it is needed to load them with a specific font encoding selected. This can be specified in the file \texttt{language.dat} by adding for instance ‘:\texttt{T1}’ to the name of the language. The macro \texttt{\bbl@get@enc} extracts the font encoding from the language name and stores it in \texttt{\bbl@hyph@enc}. The latter can be used in hyphenation files if you need to set a behaviour depending on the given encoding (it is set to empty if no encoding is given).

Pattern files may contain assignments to \texttt{\lefthyphenmin} and \texttt{\righthyphenmin}. \TeX\ does not keep track of these assignments. Therefore we try to detect such assignments and store them in the \texttt{\langle lang\rangle hyphenmins} macro. When no assignments were made we provide a default setting.

Some pattern files contain changes to the \texttt{\lccode} and \texttt{\uccode} arrays. Such changes should remain local to the language; therefore we process the pattern file in a group; the \texttt{\patterns} command acts globally so its effect will be remembered. Then we globally store the settings of \texttt{\lefthyphenmin} and \texttt{\righthyphenmin} and close the group.

When the hyphenation patterns have been processed we need to see if a file with hyphenation exceptions needs to be read. This is the case when the third argument is not empty and when it does not contain a space token. (Note however there is no need to save hyphenation exceptions into the format.)
\bbl@languages saves a snapshot of the loaded languages in the form
\bbl@elt{⟨language-name⟩}{⟨number⟩}{⟨patterns-file⟩}{⟨exceptions-file⟩}. Note
the last 2 arguments are empty in 'dialects' defined in language.dat with =. Note
also the language name can have encoding info.
Finally, if the counter \language is equal to zero we execute the synonyms stored.

2495 \def\process@language#1#2#3{% 
2496 \expandafter\addlanguage\csname l@#1\endcsname 
2497 \expandafter\language\csname l@#1\endcsname 
2498 \edef\languagename{#1} 
2499 \bbl@hook@everylanguage{#1} 
2500 \bbl@get@enc#1::\@@@ 
2501 \begin{group} 
2502 \lefthyphenmin\m@ne 
2503 \bbl@hook@loadpatterns{#2} 
2504 \ifnum\lefthyphenmin=\m@ne 
2505 \else 
2506 \expandafter\xdef\csname #1hyphenmins\endcsname{% 
2507 \the\lefthyphenmin\the\righthyphenmin} 
2508 \fi 
2509 \end{group} 
2510 \def\bbl@tempa{#3} 
2511 \ifx\bbl@tempa\@empty 
2512 \bbl@hook@loadexceptions{#3} 
2513 \fi 
2514 \let\bbl@elt\relax 
2515 \edef\bbl@languages{% 
2516 \bbl@languages\bbl@elt{#1}{\the\language}{#2}{\bbl@tempa} 
2517 \ifnum\the\language=\z@ 
2518 \expandafter\xdef\csname #1hyphenmins\endcsname{% 
2519 \set@hyphenmins\tw@\thr@@\relax 
2520 \else 
2521 \expandafter\expandafter\expandafter\set@hyphenmins 
2522 \csname #1hyphenmins\endcsname 
2523 \fi 
2524 \the\toks@ 
2525 \toks@[]% 
2526 \fi} 

\bbl@get@enc The macro \bbl@get@enc extracts the font encoding from the language name and
\bbl@hyph@enc stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

2527 \def\bbl@get@enc#1:#2:#3::\@@@{% \def\bbl@hyph@enc{#2} 

Now, hooks are defined. For efficiency reasons, they are dealt here in a special way. 
Besides luatex, format specific configuration files are taken into account.

2528 \def\bbl@hook@everylanguage#1{} 
2529 \def\bbl@hook@loadpatterns#1{\input #1\relax} 
2530 \let\bbl@hook@loadexceptions\bbl@hook@loadpatterns 
2531 \let\bbl@hook@loadkernel\bbl@hook@loadpatterns 
2532 \begin{group} 
2533 \def\AddBabelHook#1#2{% 
2534 \expandafter\xdef\csname #1\hook@#2\endcsname{% 
2535 \def\next{\toks1} 
2536 \else 
2537 \def\next{\expandafter\gdef\csname #1\hook@#2\endcsname##1} 
2538 \fi 
2539 \next} 
2540 \ifx\directlua\@undefined
\readconfigfile The configuration file can now be opened for reading.

\openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The user will be informed about this.

\def\languagename{english}\
\ifx\languagename\@empty
\message{I couldn't find the file language.dat, I will try the file hyphen.tex}\
\input hyphen.tex\relax
\chardef\l@english\z@
\else
Pattern registers are allocated using count register \last@language. Its initial value is 0. The definition of the macro \newlanguage is such that it first increments the count register and then defines the language. In order to have the first patterns loaded in pattern register number 0 we initialize \last@language with the value −1.

\last@language\m@ne

We now read lines from the file until the end is found

\loop

While reading from the input, it is useful to switch off recognition of the end-of-line character. This saves us stripping off spaces from the contents of the control sequence.

\endlinechar\m@ne
\read1 to \bbl@line
\endlinechar`\^^M

If the file has reached its end, exit from the loop here. If not, empty lines are skipped. Add 3 space characters to the end of \bbl@line. This is needed to be able to recognize the arguments of \process@line later on. The default language should be the very first one.

\if T\ifeof\f\fi T\relax
\ifx\bbl@line\@empty\else
\edef\bbl@line{\bbl@line\space\space\space}\relax
\expandafter\process@line\bbl@line\relax
\fi
\repeat

Check for the end of the file. We must reverse the test for \ifeof without \else. Then reactivate the default patterns.
and close the configuration file.

We add a message about the fact that babel is loaded in the format and with which language patterns to the \everyjob register.

Also remove some macros from memory and raise an error if \toks@ is not empty. Finally load switch.def, but the latter is not required and the line inputting it may be commented out.

Here the code for init\TeX ends.

## 12 Tentative font handling with fontspec

A general solution is far from trivial:

- \addfontfeature only sets it for the current family and it’s not very efficient, and
- \defaultfontfeatures requires to redefine the font (and the options are not “orthogonal”).
13 Hooks for XeTeX and LuaTeX

13.1 XeTeX

Unfortunately, the current encoding cannot be retrieved and therefore it is reset always to utf8, which seems a sensible default.

Xe\LaTeX{} sets many “codes” just before loading hyphen.cfg. That is not a problem in luatex, but in xetex they must be reset to the proper value. Most of the work is done in xelatex.ini, so here we just “undo” some of the changes done by Xe\LaTeX{}. Anyway, for consistency Lua\TeX{} also resets the catcodes.

% Reset chars “80-”C0 to category “other”, no case mapping:
Now, the code.

\def\BabelStringsDefault{unicode}
\let\xebl@stop\relax
\AddBabelHook{xetex}{encodedcommands}{%}
\def\bbl@tempa{#1}%
\ifx\bbl@tempa\@empty
\XeTeXinputencoding"bytes"%
\else
\XeTeXinputencoding"utf8"%
\fi
\AddBabelHook{xetex}{stopcommands}{%}
\AddBabelHook{xetex}{loadkernel}{%}
\AddBabelHook{xetex}{loadkernel}{%}
(\textit{Font selection})

\subsection{Lu\TeX}

The new loader for luatex is based solely on \texttt{language.dat}, which is read on the fly. The code shouldn't be executed when the format is build, so we check if \texttt{AddBabelHook} is defined. Then comes a modified version of the loader in \texttt{hyphen.cfg} (without the \texttt{hyphenmins} stuff, which is under the direct control of \texttt{babel}).

The names \texttt{\@<language>} are defined and take some value from the beginning because all \texttt{ldf} files assume this for the corresponding language to be considered valid, but patterns are not loaded (except the first one). This is done later, when the
language is first selected (which usually means when the \ldf finishes). If a language
has been loaded, \bbl@hyphendata@<num> exists (with the names of the files read).
The default setup preloads the first language into the format. This is intended
mainly for ‘english’, so that it's available without further intervention from the user.
To avoid duplicating it, the following rule applies: if the “0th” language and the
first language in language.dat have the same name then just ignore the latter. If there
are new synonymous, the are added, but note if the language patterns have not
been preloaded they won’t at run time.
Other preloaded languages could be read twice, if they has been preloaded into
the format. This is not optimal, but it shouldn’t happen very often – with luatex patterns
are best loaded when the document is typeset, and the “0th” language is preloaded
just for backwards compatibility.
As of 1.1b, lua(e)tex is taken into account. Formerly, loading of patterns on the fly
didn’t work in this format, but with the new loader it does. Unfortunately, the
format is not based on babel, and data could be duplicated, because languages are
reassigned above those in the format (nothing serious, anyway). Note even with
this format language.dat is used (under the principle of a single source), instead of
language.def.
Of course, there is room for improvements, like tools to read and reassign
languages, which would require modifying the language list, and better error
handling.
We need catcode tables, but no format (targeted by babel) provide a command to
allocate them (although there are packages like ctablestack). For the moment, a
dangerous approach is used – just allocate a high random number and cross the
fingers. To complicate things, etex.sty changes the way languages are allocated.

\begin{verbatim}
\begin{verbatim}
\toks@{} \count@z@ % 0=start, 1=0th, 2=normal \def\bbl@process@line#1 #2 #3 #4 {% 
\ifx=#1% \bbl@process@synonym{#2}% \else \bbl@process@language{#1#2}{#3}{#4}% \fi \ignorespaces}
\def\bbl@manylang{% \ifnum\bbl@last>\@ne \bbl@info{Non-standard hyphenation setup}% \fi \let\bbl@manylang\relax} \def\bbl@process@language#1#2#3{\ifcase\count@ \or \count@\tw@\{\count@\@ne}% \or \count@\tw@ \fi \ifnum\count@=\tw@ \expandafter\addlanguage\csname l@#1\endcsname \language@allocationnumber \chardef\bbl@last\allocationnumber \bbl@languages{\bbl@elt{#1}{\the\language}{#2}{#3} %
\end{verbatim}
\end{verbatim}
\end{verbatim}
\def\bbl@process@synonym@aux#1#2{\global\expandafter\chardef\csname l@#1\endcsname#2\relax\let\bbl@elt\relax\xdef\bbl@languages{\bbl@languages\bbl@elt{#1}{#2}{}{}}}%
\def\bbl@process@synonym#1{\ifcase\count@\toks@\expandafter{\the\toks@\relax\bbl@process@synonym{#1}}\or\@ifundefined{zth@#1}{\bbl@process@synonym@aux{#1}{0}}{}\else\bbl@process@synonym@aux{#1}{\the\bbl@last}\fi}%
\ifx\bbl@languages\@undefined % Just a (sensible?) guess
  \chardef\l@english\z@
  \chardef\l@USenglish\z@
  \chardef\bbl@last\z@
  \gdef\bbl@languages{\bbl@elt{english}{0}{hyphen.tex}{}\bbl@elt{USenglish}{0}{}}
\else
  \global\let\bbl@languages\bbl@languages@format\bbl@languages
  \def\bbl@elt#1#2#3#4{\@namedef{zth@#1}{}} % Define flags
  \bbl@languages
  \openin1=language.dat
  \ifeof1
    \bbl@warning{I couldn't find language.dat. No additional patterns loaded. Reported}%
  \else
    \loop
      \endlinechar\m@ne
      \read1 to \bbl@line
      \endlinechar"^^M
      \if\ifeof1\fi T \relax
      \ifx\bbl@line\empty\else
        \expandafter\bbl@process@line\bbl@line\relax
      \fi
    \repeat
  \fi
\endgroup
\def\bbl@get@enc#1:#2:#3\@@@{\def\bbl@hyph@enc{#2}}%
\ifx\catcodetable@undefined
\let\savecatcodetable\luatexsavecatcodetable
\let\initcatcodetable\luatexinitcatcodetable
\let\catcodetable\luatexcatcodetable
\fi
\savecatcodetable\babelcatcodetablenum\relax
\initcatcodetable\numexpr\babelcatcodetablenum+1\relax
\catcodetable\numexpr\babelcatcodetablenum+1\relax
\catcode`#=6 \catcode`$=3 \catcode`&=4 \catcode`^=7
\catcode`_=8 \catcode`{=1 \catcode`}=2 \catcode`~=13
\catcode`@=11 \catcode`\^^I=10 \catcode`\^^J=12
\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\|=12
\catcode`\`=12 \catcode`\'=12 \catcode`\"=12
\input #1\relax
\catcodetable\babelcatcodetablenum\relax
\endgroup
\def\bbl@tempa{#2}\
\ifx\bbl@tempa\@empty\else
\input #2\relax
\fi
\egroup}
def\bbl@patterns@lua#1{%
\language=\expandafter\ifx\csname l@#1:encoding\endcsname\relax
\csname l@#1\endcsname
\edef\bbl@tempa{#1}\
\else
\csname l@#1:encoding\endcsname
\edef\bbl@tempa{#1:encoding}\
\fi\relax
@namedef{luatexhyphenloaded@the\language}{}\ Temp
@ifundefined{bbl@hyphendata@the\language}%
{\def\bbl@elt##1##2##3##4{%\ifnum##2=\csname l@bbl@tempa\endcsname % #2=spanish, dutch:OT1...
\def\bbl@tempb{##3}\
\ifx\bbl@tempb\@empty\else % if not a synonymous
\def\bbl@tempc{{##3}{##4}}\
\fi
\bbl@languages
\@namedef{bbl@hyphendata@the\language}{}
\}{}\ Babel = {}\}
def Babel.bytes(line)
return line:gsub("(.)", function (chr) return unicode.utf8.char(string.byte(chr)) end)
def Babel.begin_process_input()
if luatexbase and luatexbase.add_to_callback then
    luatexbase.add_to_callback('process_input_buffer',
        Babel.bytes, 'Babel.bytes')
else
    Babel.callback = callback.find('process_input_buffer')
    callback.register('process_input_buffer', Babel.bytes)
end

function Babel.end_process_input ()
    if luatexbase and luatexbase.remove_from_callback then
        luatexbase.remove_from_callback('process_input_buffer', 'Babel.bytes')
    else
        callback.register('process_input_buffer', Babel.callback)
    end
end

function Babel.addpatterns(pp, lg)
    local lg = lang.new(lg)
    local pats = lang.patterns(lg) or ''
    lang.clear_patterns(lg)
    for p in pp:gmatch('[^%s]+') do
        ss = ''
        for i in string.utfcharacters(p:gsub('%d', '')) do
            ss = ss .. '%d?' .. i
        end
        ss = ss:gsub('^%d%?%.', '%%.') .. '%d?'
        ss = ss:gsub('%.%d%?$', '%%.').pats, n = pats:gsub('%s' .. ss .. '%s', ' ' .. p .. ' ') in n == 0 then
            tex.sprint([[[string]csname\space bbl@info\endcsname{New pattern: }]] .. p .. ']])
            pats = pats .. ' ' .. p
        else
            tex.sprint([[[string]csname\space bbl@info\endcsname{Renew pattern: }]] .. p .. ']])
        end
    end
    lang.patterns(lg, pats)
end

\def\BabelStringsDefault{unicode}
\let\luabbl@stop\relax
\AddBabelHook{luatex}{encodedcommands}{%
    \def\bbl@tempa{utf8}\def\bbl@tempb{#1}%
    \ifx\bbl@tempa\bbl@tempb\else
        \directlua{Babel.begin_process_input()}%\directlua{Babel.end_process_input()}}%
\AddBabelHook{luatex}{stopcommands}{%
    \luabbl@stop
\AddBabelHook{luatex}{patterns}{%
    \@ifundefined{bbl@hyphendata@\the\language}{%
        \def\bbl@elt##1##2##3##4{%
            \ifnum##2=\csname l@#2\endcsname % #2=spanish, dutch:OT1...
            \def\bbl@tempb{##3}%
            \directlua{Babel.begin_process_input()}%\directlua{Babel.end_process_input()}}%
This macro adds patterns. Two macros are used to store them: \bbl@patterns@ for the
global ones and \bbl@patterns@<lang> for language ones. We make sure there
is a space between words when multiple commands are used.
14 The ‘nil’ language

This ‘language’ does nothing, except setting the hyphenation patterns to nohyphenation.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than once, checking the category code of the @ sign, etc.

\captionnil
\datenil

This macro is used to store the values of the hyphenation parameters \lefthyphenmin and \righthyphenmin.

\providehyphenmins{\CurrentOption}{\m@ne\m@ne}

The next step consists of defining commands to switch to (and from) the ‘nil’ language.

\captionnil
\datenil

The macro \ldf@finish takes care of looking for a configuration file, setting the main language to be switched on at \begin{document} and resetting the category code of @ to its original value.
15 Support for Plain TeX (plain.def)

15.1 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to designate his version of the American English hyphenation patterns, a new solution has to be found in order to be able to load hyphenation patterns for other languages in a plain-based TeX-format. When asked he responded:

That file name is “sacred”, and if anybody changes it they will cause severe upward/downward compatibility headaches.

People can have a file locally hyphen.tex or whatever they like, but they mustn’t fiddle with hyphen.tex (or plain.tex except to preload additional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers around plain.tex and lplain.tex to achieve the desired effect, based on the babel package. If you load each of them with init\TeX, you will get a file called either bplain.fmt or blplain.fmt, which you can use as replacements for plain.fmt and lplain.fmt.

As these files are going to be read as the first thing init\TeX sees, we need to set some category codes just to be able to change the definition of \input

\catcode`{=1 % left brace is begin-group character
\catcode`}=2 % right brace is end-group character
\catcode`#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on \TeX’s input path by trying to open it for reading...

\openin \input@ hyphen.cfg

If the file wasn’t found the following test turns out true.

\let\input@ undefined

Now that we have made sure that hyphen.cfg will be loaded at the right moment it is time to load plain.tex.

bplain\input@ plain.tex
blplain\input@ lplain.tex
Finally we change the contents of \fmtname to indicate that this is not the plain format, but a format based on plain with the babel package preloaded.

When you are using a different format, based on plain.tex you can make a copy of blplain.tex, rename it and replace plain.tex with the name of your format file.

15.2 Emulating some \LaTeX features

The following code duplicates or emulates parts of \LaTeX2ε that are needed for babel.

15.3 General tools

A number of \LaTeX macro’s that are needed later on.
\texttt{\LaTeX} 2ε has the command \texttt{@onlypreamble} which adds commands to a list of commands that are no longer needed after \texttt{\begin{document}}.

\begin{verbatim}
\ifx\preamblecmds\undefined
\def\preamblecmds{}
\fi
\def\@onlypreamble#1{
\expandafter\gdef\expandafter\@preamblecmds\expandafter{\@preamblecmds\do#1}}
\@onlypreamble\@onlypreamble
\end{verbatim}

Mimick \texttt{\LaTeX}’s \texttt{\AtBeginDocument}; for this to work the user needs to add \texttt{\begindocument} to his file.

\begin{verbatim}
\def\begindocument{
\@begindocumenthook
\global\let\@begindocumenthook\undefined
\def\do##1\global\let##1\undefined
\preamblecmds
\global\let\do\noexpand}
\ifx\@begindocumenthook\undefined
\def\@begindocumenthook{}
\fi
\@onlypreamble\@begindocumenthook
\def\AtBeginDocument{\g@addto@macro\@begindocumenthook}
\end{verbatim}

We also have to mimick \texttt{\LaTeX}’s \texttt{\AtEndOfPackage}. Our replacement macro is much simpler; it stores its argument in \texttt{\@endofldf}.

\begin{verbatim}
\def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
\def\@endofldf{
\@onlypreamble\@endofldf
\let\bbl@afterlang\empty
\chardef\bbl@opt@hyphenmap\z@
\end{verbatim}

\texttt{\LaTeX} needs to be able to switch off writing to its auxiliary files; plain doesn’t have them by default.

\begin{verbatim}
\ifx\if\undefined
\expandafter\def\expandafter\if\expandafter\iffalse\fi\else\fi
\fi
\@onlypreamble\if\empty\else\expandafter\@secondoftwo\fi
\end{verbatim}

Mimick \texttt{\LaTeX}’s commands to define control sequences.

\begin{verbatim}
\def\newcommand\@star@or@long\new@command
\def\new@command#1{
\@testopt{\newcommand\if\long#1\def\do\new@command\expandafter{\do\new@command\expandafter{\do#1}}}
\ifnextchar\long\def\argdef#1\long#2\long#3
\end{verbatim}

122
The following little macro \texttt{\textbackslash in@} is taken from \texttt{latex.ltx}; it checks whether its first argument is part of its second argument. It uses the boolean \texttt{\textbackslash in@}; allocating a new boolean inside conditionally executed code is not possible, hence the construct with the temporary definition of \texttt{\textbackslash bbl@tempa}.  

\begin{verbatim}
\def\bbl@tempa{%\csname newif\endcsname\ifin@}
\end{verbatim}
\ifx\in\@undefined\def\in@#1#2{%\def\in@@##1#1##2##3\in@@{%\ifx\in@##2\in@false\else\in@true\fi}%\in@@#2#1\in@\in@@}\\else\let\bbl@tempa\@empty\fi\bbl@tempa

LaTeX has a macro to check whether a certain package was loaded with specific options. The command has two extra arguments which are code to be executed in either the true or false case. This is used to detect whether the document needs one of the accents to be activated (activegrave and activeacute). For plain \TeX{} we assume that the user wants them to be active by default. Therefore the only thing we do is execute the third argument (the code for the true case).

\def\@ifpackagewith#1#2#3#4{#3}

The LaTeX macro \@ifl@aded checks whether a file was loaded. This functionality is not needed for plain \TeX{} but we need the macro to be defined as a no-op.

\def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand and \providecommand exist with some sensible definition. They are not fully equivalent to their \LaTeX{} versions; just enough to make things work in plain \TeX{} environments.

\ifx\tempcnta\@undefined\csname newcount\endcsname\tempcnta\relax\fi
\ifx\tempcntb\@undefined\csname newcount\endcsname\tempcntb\relax\fi

To prevent wasting two counters in \LaTeX{} 2.09 (because counters with the same name are allocated later by it) we reset the counter that holds the next free counter (\count10).

\ifx\bye\@undefined\advance\count10 by -2\relax\fi
\ifx@ifnextchar\@undefined\def\@ifnextchar#1#2#3{%\let\reserved@d=#1%\def\reserved@a{#2}\def\reserved@b{#3}%\futurelet\@let@token\@ifnch}\def\@ifnch{%\ifx\@let@token\@sptoken\let\reserved@c@xifnch\else\ifx\@let@token\reserved@d\let\reserved@c\reserved@a\else\let\reserved@c\reserved@b\fi\fi\reserved@c}\def\:{\let\@sptoken=}\:{\expandafter\def\::\futurelet\@let@token\@ifnch}\fi

\def\::{\let\@sptoken= }\: % this makes \@sptoken a space token
\def\::{\@xifnch} \expandafter\def\::{\futurelet\@let@token\@ifnch}
\fi

124
15.4 Encoding related macros

Code from \texttt{ltoutenc.dtx}, adapted for use in the plain \TeX{} environment.

\begin{verbatim}
\def\DeclareTextCommand{%
  \@dec@text@cmd\providecommand
}\def\ProvideTextCommand{%
  \@dec@text@cmd\providecommand
}\def\DeclareTextSymbol#1#2#3{%
  \@dec@text@cmd\chardef#1{#2}#3\relax
}\def\@dec@text@cmd#1#2#3{%
  \expandafter\def\expandafter#2%
    \expandafter{\csname#3-cmd\expandafter\endcsname
      \expandafter#2%
      \csname#3\string#2\endcsname%
    }%
  \let\@ifdefinable\@rc@ifdefinable
  \@do@text{#1}{\csname#3\string#2\endcsname
    \@dec@text@cmd#1#2#3
  }%
  \let\@ifdefinable\@ifdefinable
  \expandafter#1\csname#3\string#2\endcsname
}\def\@current@cmd#1{%
  \ifx\protect\@typeset@protect\else
    \noexpand#1\expandafter\@gobble
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\def\@changed@cmd#1#2{%
  \ifx\protect\@typeset@protect
    \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
      \expandafter\ifx\csname ?\string#1\endcsname\relax
        \def\csname ?\string#1\endcsname{%
          \@changed@x@err{#1}%
        }%
      \fi
      \global\expandafter\let
        \csname#1\string#2\endcsname\relax
      \expandafter\expandafter\expandafter\relax
    \fi
  \else
    \noexpand#1%
  \fi
}\end{verbatim}
Currently we only use the \LaTeX\ method for accents for those that are known to be made active in some language definition file.

The following control sequences are used in babel.def but are not defined for plain \TeX.  

For a couple of languages we need the \LaTeX-control sequence \texttt{\scriptsize} to be available. Because plain \TeX doesn't have such a sophisticated font mechanism as \LaTeX\ has, we just \let it to \sevenrm.
15.5 Babel options

The file babel.def expects some definitions made in the \TeX{} style file. So we must provide them at least some predefined values as well some tools to set them (even if not all options are available). There in no package options, and therefore and alternative mechanism is provided. For the moment, only \texttt{\babeloptionstrings} and \texttt{\babeloptionmath} are provided, which can be defined before loading babel. \texttt{\BabelModifiers} can be set too (but not sure it works).

\begin{verbatim}
15.5 Babel options
The file babel.def expects some definitions made in the \TeX{} style file. So we must provide them at least some predefined values as well some tools to set them (even if not all options are available). There in no package options, and therefore and alternative mechanism is provided. For the moment, only \texttt{\babeloptionstrings} and \texttt{\babeloptionmath} are provided, which can be defined before loading babel. \texttt{\BabelModifiers} can be set too (but not sure it works).
\end{verbatim}

16 Acknowledgements

I would like to thank all who volunteered as $\beta$-testers for their time. I would like to mention Julio Sanchez who supplied the option file for the Spanish language and Maurizio Codogno who supplied the option file for the Italian language. Michel Goossens supplied contributions for most of the other languages. Nico Poppelier helped polish the text of the documentation and supplied parts of the macros for the Dutch language. Paul Wackers and Werenfried Spit helped find and repair bugs. During the further development of the babel system I received much help from Bernd Raichle, for which I am grateful.

References


